Accumulation

> Given information about a derivative, we can discuss how much area has accumulated over an interval to solve for information about the original function.
$>$ The integral of a rate over a period of time gives you the amount accumulated.
$>$ We apply the first fundamental theorem of calculus:

Example \#1:

The graph of $f(t)$ is shown below.

*The integral of a rate with bounds gives you the amount accumulated over the period of time on the bounds.
A. Suppose $f(t)$ gives the rate of change of the water level in a lake where the water is described in meters above sea level over time, t, in months. If the level of the lake is 110 m above sea level at the starting time, what is the level of the lake at time $\mathrm{t}=4$ months?

Example \#2:

The acceleration of an airplane from the moment of liftoff ($\mathrm{t}=0$) until 20 minutes into the flight is shown below.

a) If the velocity at lift off is $900 \mathrm{ft} / \mathrm{min}$, what is the velocity of the plane after 20 minutes?
b) Different scenario: If the velocity is 500 at $\mathrm{t}=5$, what was the velocity at $\mathrm{t}=20$? What about at $\mathrm{t}=0$?

Lesson \#85/86

AP Prep Question from Composition Book- 2003 (d)

*This question can be found in your composition book.
Let f be a function defined on the closed interval $-3 \leq x \leq 4$ with $f(0)=3$. The graph of f^{\prime}, the derivative of f, consists of one line segment and a semicircle, as shown above.
(d) Find $f(-3)$ and $f(4)$. Show the work that leads to your answers.
*The answer in the video for $f(-3)$ is incorrect, even though the set up is right. The correct answer can be found at the bottom of this page. \odot

Example \#3:

A cake, heated to a temperature of 350 degrees Fahrenheit, is taken out of an oven and placed in a 70 degree room at time $t=0$ minutes. The temperature of the cake is changing at a rate of $C(t)=-60 e^{-.2 t}$ degrees per minute.
To the nearest degree, what is the temperature of the cake at time $\mathrm{t}=5$ minutes?

Example \#4:
The graph of the velocity of a particle moving on the x-axis is given below. The particle starts at $\mathrm{x}=2$ when $\mathrm{t}=0$.

A. Find where the particle is at the end of the trip, $t=4$.
B. Find the total distance travelled by the particle.

Example \#5:

Water is being pumped into a tank at a constant rate of 5 gallons per minute. Water leaks out of the tank at the rate of \sqrt{t} gallons per minute, for $0 \leq t \leq 45$ minutes. At time $t=0$, the tank contains 30 gallons of water.
A. How many gallons leak out of the tank from $t=0$ to $t=3$?
Please note that Mrs. Young meant to write that the antiderivative is $\frac{2}{3} t^{\frac{3}{2}}$ (in terms of t) for this problem and did not catch her mistake until later. Whoops!
B. How many gallons are added to the tank from $t=0$ to $t=3$?
C. How many gallons of water are in the tank at time $t=3$?
D. Write an expression for $A(t)$, the total amount of water in the tank at time t.
E. Is the amount of water increasing or decreasing at time $t=3$? Why?

