
Lesson 85/86 for 2020 AP Exam- Start +Accumulation

The 2020 AP Exam may contain some start + accumulation questions as the start + accumulation formula is just an application of the 1st fundamental theorem.

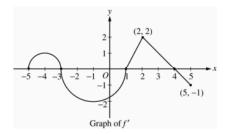
Questions that may be asked will not have an applied context, which means they will not be questions with real-life scenarios. Most of the examples from the Lesson 85/86 video lesson were real-life scenarios (particle motion, temperature, water level of a lake, etc.), so below are some sample problems of ways in which you could be assessed on Lesson 85/86 for the 2020 AP Test. Answers are on the very last page.

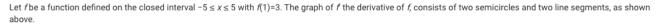
Noncalculator Questions:

- 25 35

Ś

3.


(Е


If G(x) is an antiderivative for f(x) and G(2) = -7, then G(4) =

f'(4)-7 + f'(4) $\int_{-1}^{4} f(t) dt$ $\int^{4} \left(-7 + f\left(t\right)\right) \ dt$ \mathbf{E} $-7 + \int_{-4}^{4} f(t) dt$

 $6 - 2\pi$

 $4 - 2\pi$

Find the absolute minimum value of f(x) over the closed interval $-5 \le x \le 5$. Explain your reasoning.

Calculator Questions:

5.

6.

Let F(x) be an antiderivative of $\frac{(\ln x)^3}{x}$. If F(1)=0, then F(9)

If the function f is defined by $f(x)=\sqrt{x^3+2}$ and g is an antiderivative of f such that g(3) = 5, then g(1) =

7. If $f'(x) = \sin\left(\frac{\pi e^x}{2}\right)$ and f(0) = 1, then f(2) =

Answers:

- 1. A
- 2. D
- 3. E
- 4.

The student response earns all of the following points:

1 point is earned if identifies x=1 as a candidate

- 1 point is earned if considers endpoint
- 1 point is earned for value and explanation

Candidates for the absolute minimum are where f changes from negative to positive (at x=1) and at the endpoints (x=-5,5).

$$egin{aligned} f(-5) &= 3 + \int_{1}^{-5} f(x) dx = 3 - rac{\pi}{2} + 2\pi > 3 \ f(1) &= 3 \ f(5) &= 3 + \int_{1}^{5} f'(x) dx = 3 + rac{3\cdot 2}{2} - rac{1}{2} > 3 \end{aligned}$$

The absolute minimum value of f on [-5, 5] is f(1)=3.

- 5. B
- 6. C
- 7. 1.157