Midpoint and Trapezoid Rule

Example \#1:
Let $f(x)=e^{x}$.
Set up an approximation for the area under the curve of $f(x)$ from $\mathrm{x}=1$ to $\mathrm{x}=3$ using a left Riemann sum with 4 equal subintervals.

Set up an approximation for $\int_{1}^{3} f(x) d x$ using a right Riemann sum with 4 subintervals of equal length.

Use a midpoint Riemann sum with 4 equal subintervals to approximate $\int_{1}^{3} f(x) d x$.

Example \#2:

A rocket has positive velocity $\mathrm{v}(\mathrm{t})$ after being launched upward. The velocity of the rocket is recorded for select values of t over the interval $0 \leq t \leq 80$ seconds, as shown in the table below.

t (seconds)	0	10	20	30	40	50	60	70	80
$v(t)$ (feet per second)	5	14	22	29	35	40	44	47	49

Write an integral expression in terms of $v(t)$ for the average velocity of the rocket from $\mathrm{t}=10$ seconds to $\mathrm{t}=70$ seconds. Estimate the average velocity of the rocket from $\mathrm{t}=10$ seconds to $t=70$ seconds using a midpoint Riemann sum with 3 subintervals of equal length.

Trapezoid Rule:

Area of 1 Trapezoid:

If I have several trapezoids in a row with the same width...

Trapezoid Rule when the subintervals are equal:

Formula: Area $\approx \frac{1}{2} \frac{b-a}{n}\left[y_{0}+2 y_{1}+2 y_{2}+\cdots+2 y_{n-1}+y_{n}\right]$ where n is the number of subintervals.

Example \#3: Use trapezoid rule to find the area from $\mathrm{x}=-3$ to $\mathrm{x}=0$ of $f(x)=5 x^{2} \sin \left(e^{x}\right)$ using 3 subintervals of equal length.

Trapezoid Rule when the subintervals are unequal:
You have to calculate the area of each trapezoid separately and then add the areas together.

Example \#4:

t (sec)	0	15	25	30	35	50	60
$v(t)$ $(\mathrm{ft} / \mathrm{sec})$	-20	-30	-20	-14	-10	0	10

A car travels on a straight track. During the time interval $0 \leq t \leq 60$ seconds, the car's velocity, v, measured in feet per second is shown in the table above.
Using appropriate units, explain the meaning of $\int_{25}^{50} v(t) d t$ in terms of the car's motion. Approximate $\int_{25}^{50} v(t) d t$ using a trapezoidal approximation with the three subintervals determined by the table.

