

Let
$$f(x) = e^x$$
.

Set up an approximation for the area under the curve of f(x) from x=1 to x=3 using a left Riemann sum with 4 equal subintervals.

Set up an approximation for $\int_{1}^{3} f(x) dx$ using a right Riemann sum with 4 subintervals of equal length.

Use a midpoint Riemann sum with 4 equal subintervals to approximate $\int_{1}^{3} f(x) dx$.

Example #2:

A rocket has positive velocity v(t) after being launched upward. The velocity of the rocket is recorded for select values of t over the interval $0 \le t \le 80$ seconds, as shown in the table below.

t (seconds)	0	10	20	30	40	50	60	70	80
v(t) (feet per second)	5	14	22	29	35	40	44	47	49

Write an integral expression in terms of v(t) for the average velocity of the rocket from t=10 seconds to t=70 seconds. Estimate the average velocity of the rocket from t=10 seconds to t=70 seconds using a midpoint Riemann sum with 3 subintervals of equal length.

Lesson #79 **Trapezoid Rule:**

Area of 1 Trapezoid:

If I have several trapezoids in a row with the same width...

Trapezoid Rule when the <u>subintervals are equal</u>:

Formula: Area $\approx \frac{1}{2} \frac{b-a}{n} [y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n]$ where n is the number of subintervals.

Example #3: Use trapezoid rule to find the area from x=-3 to x=0 of $f(x) = 5x^2 \sin(e^x)$ using 3 subintervals of equal length.

Trapezoid Rule when the <u>subintervals are unequal</u>:

You have to calculate the area of each trapezoid separately and then add the areas together.

Example #4:

t (sec)	0	15	25	30	35	50	60
v(t) (ft/sec)	-20	-30	-20	-14	-10	0	10

A car travels on a straight track. During the time interval $0 \le t \le 60$ seconds, the car's velocity, v, measured in feet per second is shown in the table above.

Using appropriate units, explain the meaning of $\int_{25}^{50} v(t) dt$ in terms of the car's motion. Approximate $\int_{25}^{50} v(t) dt$ using a trapezoidal approximation with the three subintervals determined by the table.