Review of Logarithms

Common log: $log_{10}x = log \times$ **Natural log**: $log_e x = lnx$

Property	Definition	Example
Product	$\log_b mn = \log_b m + \log_b n$	
Quotient	$\log_b \frac{m}{n} = \log_b m - \log_b n$	
Power	$\log_b m^p = p \cdot \log_b m$	
Equality	If $\log_b m = \log_b n$, then $m = n$.	

Identities: log(10) = 1 and ln(e) = 1

Change of Base: $log_b x = \frac{log(x)}{logb} = \frac{ln(x)}{ln(b)}$

Exponent Properties:

$$log_b b^x = x$$

$$b^{log_bx}=x$$

$$log 10^x = x$$

$$10^{logx} = x$$

Example #1: **Expand** $log\sqrt{bc}$.

Example #3: Expand $ln\left(\frac{b}{a^4}\right)$

Example #4: Rewrite as a single logarithm.

$$5\log 2 + \log 3 - \log 8$$

Example #5:
$$\frac{1}{3}lnx - \ln(x^2 - 1)$$

Example #6: Solve for x: ln(x + 1) = 5

Example #7: **Solve for x:** $\log_7(7^{3x}) = 9$