Review of Volume Problems

1.) Consider the region R bounded by the functions $f(x)=\sqrt{x}$ and $g(x)=6-x$ and the positive x-axis.

a.) Find the area of R.
b.) Find the volume of the solid generated by revolving R about the y-axis.
c.) Find the volume of the solid generated by revolving R about the x-axis.
d.) Consider a horizontal line $y=k$ which splits R into two regions (one above the line and one below). Write an equation involving one or more integrals that could be used to find the value of k if the two regions have equal area.
2.) Which of the following integrals has the greatest value? Explain your choice.
[Answer the question without actually taking any integrals.]

$$
\int_{0}^{\pi / 2} \sin x d x \quad \int_{\pi / 4}^{3 \pi / 4} \sin x d x \quad \int_{\pi / 2}^{\pi} \sin x d x \quad \int_{0}^{2 \pi} \sin x d x
$$

3.) Consider the region S given below, bounded by these 4 curves:

$$
f(x)=\sin (x)+4 \quad g(x)=6-x \quad h(x)=(x-4)^{2}-9 \quad x=2
$$

Set up an integral expression to find the area of this region. Calculators are allowed.

4.)

Consider the region S given in the graph to the right of the functions $f(x)=\frac{4}{1+x^{2}}$ and $g(x)=0.64 x+2.08$. You may assume that the left point of intersection of the function is $(-2,0.8)$.
Calculators are allowed.

a.) Find the x-coordinate of the right point of intersection of the graphs above.
b.) Find the volume of the solid generated by revolving S about the line $y=-1$.
c.) Find the volume of the solid with base S whose cross-sections perpendicular to the x axis are squares.

