\qquad
\qquad

Volumes with Cross Sections

Problems 1-3 are noncalculator, Problem 4 is calculator. Show all work for noncalc questions including adding fractions.

1. The base of a solid is the region in the first quadrant bounded by the graph of $y=3 x^{\frac{1}{2}}-x^{\frac{3}{2}}$ and the x -axis. Cross sections perpendicular to the x -axis are isosceles right triangles, with one leg in the xy-plane. What is the volume of the solid?
2. The base of a solid is the circle centered at the origin with a radius of 3 inches. Find the volume of the solid if all cross sections perpendicular to the x -axis are equilateral triangles.
\qquad
\qquad
3. The base of a solid is the region bounded by the graphs of $x^{2}=16 y$ and $y=2$. Cross sections perpendicular to the χ-axis are rectangles whose height is twice that of the side in the xy-plane. Find the volume of the solid.
4. A mathematician has a paperweight made so that its base is the shape of the region between the x -axis and one arch of the curve $y=2 \sin x$. Each crosssection perpendicular to the x-axis is a semicircle whose diameter runs from the x-axis to the curve. Find the volume of the paperweight.
