Introduction to the Derivative

Instantaneous Rate of Change:

Alternative Definition of the Derivative:

Definition of the Derivative:

What are the similarities and differences between the equations above?

Example \#1:
Given $g(x)=x^{2}-x$.
A. Use the definition of the derivative to find the slope of the tangent line of g at any point x.
B. Find the equation of the tangent line at $(4, g(4))$

Example \#2:
Given $f(x)=\sqrt{x-1}$.
A. Use the definition of the derivative to find the slope of the tangent line of f at any point x.
B. Find the equation of the tangent line and the normal line at $x=2$
${ }^{* *}$ The normal line is perpendicular to the tangent line at the point of tangency.

Example \#3: Position vs. Time Graph position (m)

A. Estimate the instantaneous velocity at $\mathrm{t}=20$ seconds.
B. Graph Velocity vs. Time.

Example \#4:
Given $h(x)=|x|$, graph $h^{\prime}(\mathrm{x})$.

Rule for Derivatives:

Lesson \#21
Example \#5: Graph the derivative for each function.
a)

b)

