\qquad

Worksheet \#15: Justifications Practice

This is the graph of $f^{\prime}(x)$, the derivative of $f(x) \cdot f^{\prime}(x)$ has horizontal tangents when $\mathrm{x}=3$, $\mathrm{x}=0$, and $\mathrm{x}=-3$. Justify each of the following responses.
A) For what value(s) of x does f have a relative maximum?
B) For what value(s) of x does f have a relative minimum?
C) For what interval(s) of x is f concave downwards?
D) For what interval(s) of x is f decreasing?
E) At $x=3$, $\operatorname{does} f$ have a relative min, relative max, or point of inflection? Explain.
\qquad

This is the graph of h on the interval $[-6,5]$. Let $g(x)=\int_{0}^{x} h(t) d t$.
A) For what value(s) of x on the open interval $(-6,5)$ is h^{\prime} undefined? Explain.
B) Find $h^{\prime}(-3)$ and $h^{\prime}(0)$.
C) Find $g(2)$.
D) For what value(s) of x, if any, does g have a relative maximum? Justify.
E) For what value(s) of x, if any, does g have a relative minimum? Justify.
F) For what value(s) of x on the open interval ($-6,5$), if any, does g have a point of inflection? Justify.
G) For what interval(s) of x on the open interval $(-6,5)$ is g concave upwards? Justify.

