Unit 8 Review

1. The values of a function are given in the table

X	0	1	2	3	4	5	6
$F(x)$	1	2	3	4	6	7	10

Function $\mathrm{F}(\mathrm{x})$ is a differentiable function and selected values are stated above.
A) Approximate the value of $\int_{0}^{6} F(x) d x$ using a midpoint Riemann sum of 3 equal subintervals.
B) Approximate the average value of $F(x)$ on [0,6] using a Right Hand Riemann sum with 3 equal subintervals.
C) Approximate the value of $\int_{2}^{5} F(x) d x$ using a trapezoidal sum of 3 equal subintervals.
D) Suppose that the line tangent to $F(x)$ at $x=4$ is given by $y=\frac{7}{2} x-8$.

Find $\lim _{x \rightarrow 4} \frac{F(x)-2 x+2}{2-\sqrt{x}}$ or explain why it does not exist.
2.

Cat \#

The figure above shows the graph of f^{\prime}, the derivative of the function, f, for $-7<x<7$. The graph of f 'has horizontal tangent lines at $x=-3, x=2$, and $x=5$, and a vertical tangent line at $x=3$.
A) Find all values of x, for $-7<x<7$, at which f attains a relative minimum. Justify With a labeled number line and sentence.
B) Find all values of x, for $-7<x<7$, at which f attains a relative maximum. Justify With a labeled number line and sentence.
C) Find all values of x, for $-7<x<7$, at which $f^{N}(x)<0$. Justify With a sentence.
D) At what values of x, for $-7 \leq x \leq 7$, does f attain its absolute maximum. Justify with A sentence.
3. Region R is bounded by $y=\ln x, x=1, x=4, y=0$
A) Sketch, label, and shade Region R
B) Find Area of Region R
C) Find Volume of the solid obtained by rotating Region R about the y-axis.

Sketch region. Use integration by parts to solve.
D) Find Volume of the solid obtained by rotating Region R about the line $y=3$. Set up only - do not solve. Sketch region.

Cat \# 13
4. Consider the differential equation $\frac{d y}{d x}=x(y-1)^{2}$
A) Sketch the slope field for the given differential equation at the eleven points indicated

B) Separate the differential equation $\cdot y$'s with the dy on one side of the equation and x 's with the dx on the other side.
C)

Find the particular solution with the initial condition' $\quad \mathbf{f}(0)=-1$
Simplify final solution to have no complex fractions
D) Find the range of the function found in part (C) Use L"Hopitals Rule to find solution

Cat \# 12. 4
5. A) Solve by Integration by Parts : $\int x e^{-3 x} d x$
B) Use L"Hopitals Rule to find limit:

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{2 x-2}
$$

C) $y=\sec ^{-1}\left(x^{4}\right)$

Find y "
D) $y=\tan ^{-1}\left(x^{3}\right)$

Find $y^{\prime \prime}$
E) $\int \frac{x}{9+\mathrm{x}^{4}} d x$
F) Solve by Integration by Parts: $\quad \int x \ln (x) d x$

6. Cat\#
 Slope Fields

Match the slope fields with their differential equations.
(A)

(C)

(B)

(D)

1) $\frac{d y}{d x}=\frac{1}{2} x+1$
2). $\frac{d y}{d x}=y$
2) $\frac{d y}{d x}=x-y$
3) $\frac{d y}{d x}=-\frac{x}{y}$
E) The calculator drawn slope field for the differential equation $\frac{d y}{d x}=x y$ is shown in the figure below. The solution curve passing through the point (0,1) is also shown.
(a) Sketch the solution curve through the point $(0,2)$.
(b) Sketch the solution curve through the point $(0,-1)$.

F) The calculator drawn slope field for the differential equation $\frac{d y}{d x}=x+y$ is shown in the figure below.
(a) Sketch the solution curve through the point $(0,1)$.
(b) Sketch the solution curve through the point $(-3,0)$.

