Name:_____

<u>L'Hopital's Rule</u>

Assume that questions #1-8 are multiple-choice questions. Work must include appropriate limit notation.

1.
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 8}$$
 2. $\lim_{x \to 0} \frac{\sin 3x}{\tan 5x}$

3.
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$
 4. $\lim_{t \to 0} \frac{te^t}{1 - e^t}$

5. $\lim_{x \to \pi^+} \frac{\sin x}{x - \pi}$ 6. $\lim_{x \to 0^+} \frac{\sin x}{x^2}$

7.
$$\lim_{x \to \infty} \frac{\ln x}{x}$$
 8. $\lim_{x \to \infty} \frac{e^{3x}}{2x}$

Show the work necessary for questions #9-12 as if they were free response questions.

$$\lim_{x \to \pi} \frac{3\cos x + \sin(4x) + 3}{x^2 - \pi^2}$$

Lesson #80 HW

Name:__

10. Let *f* be a twice-differentiable function. Use the table below to answer question 10.

	x	f(x)	f'(x)	
	2	4	-1	
	4	9	-2	
a) $\lim_{x \to 2} \frac{f(x)-4}{x^3-8}$				b) $\lim_{x \to 4} \frac{\sqrt{f(x)} - 3}{8x - 2x^2}$

11. Consider the graph of function *h*. Use the graph to answer question 11.

lim	$sin\left(\frac{\pi}{2}x\right) - x$
$x \rightarrow -1$	$1 - (h(x))^2$

12. The functions f and g are twice-differentiable functions where g(0) = 2. The function g satisfies $g(x) = \frac{\sin x}{(f(x))^4 - 16}$ for $x \neq 0$. It is known that $\lim_{x \to 0} g(x)$ can be evaluated using L'Hospital's Rule. Use $\lim_{x \to 0} g(x)$ to find f(0) and f'(0). Show the work that leads to your answers.