Midpoint/Trapezoid Rule

You may use a calculator on this worksheet after you set up the problems.

- 1. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R(t). The table below shows the rate as measured every 3 hours for a 24-hour period.
 - A) Use a midpoint Riemann sum with 4 subdivisions of

)	equal length to approximate $\int_{0}^{24} R(t) dt$.		R(t)	
	$J_1 = S_1 = J_1^0$ (2)	(hours)	(gallons per hour)	
		0	9.6	
		3	10.4	
		6	10.8	
		9	11.2	
		12	11.4	
		15	11.3	
B)	Using correct units, explain the meaning of your answer in terms of water flow.	18	10.7	
		21	10.2	
		24	9.6	
			1	

- 2. Selected values of the velocity, v(t), in ft/sec, of a car travelling on a straight road for $0 \le t \le 50$ are listed in the table below.
 - A) Approximate $\int_{0}^{50} v(t) dt$ with a Riemann sum using the midpoints of five subintervals of equal length.

4	(1)				
t	v(t)				
(seconds)	(feet per second)				
0	0				
5	12				
10	20				
15	30				
20	55				
25	70				
30	78				
35	81				
40	75				
45	60				
50	72				

- B) Approximate $\int_{0}^{50} v(t) dt$ with a trapezoidal sum using five subintervals of equal length.
- 3. Use a midpoint Riemann sum with 6 subintervals of equal length to approximate $\int_{2}^{5} \sqrt{x-1} dx$.

4. Use a trapezoidal sum with 6 subintervals of equal length to approximate $\int_{1}^{4} \frac{1}{\sqrt{x}} dx$.

Name

Г

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twicedifferentiable and strictly increasing function R of time t. The graph of R and a table of selected values of R(t), for the time interval $0 \le t \le 90$ minutes, are shown above.

- A) Approximate the value of $\int_0^{90} R(t) dt$ using a trapezoidal approximation with the five subintervals indicated in the table.
- B) For $0 < b \le 90$, explain the meaning of $\frac{1}{b} \int_0^b R(t) dt$ in terms of fuel consumption for the plane, using correct units.

6.	

Distance x (cm)	0	1	5	6	8
Temperature $T(x)$ (°C)	100	93	70	62	55

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature T(x), in degrees Celsius (°C), of the wire x cm from the heated end. The function T is decreasing and twice differentiable.

- (a) Estimate T'(7). Show the work that leads to your answer. Indicate units of measure.
- (b) Write an integral expression in terms of T(x) for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.