\qquad

Midpoint/Trapezoid Rule

You may use a calculator on this worksheet after you set up the problems.

1. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function $R(t)$. The table below shows the rate as measured every 3 hours for a 24 -hour period.
A) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate $\int_{0}^{24} R(t) d t$.
B) Using correct units, explain the meaning of your answer in terms of water flow.

t (hours)	$R(t)$ (gallons per hour)
0	9.6
3	10.4
6	10.8
9	11.2
12	11.4
15	11.3
18	10.7
21	10.2
24	9.6

2. Selected values of the velocity, $v(t)$, in $\mathrm{ft} / \mathrm{sec}$, of a car travelling on a straight road for $0 \leq t \leq 50$ are listed in the table below.
A) Approximate $\int_{0}^{50} v(t) d t$ with a Riemann sum using the midpoints of five subintervals of equal length.
B) Approximate $\int_{0}^{50} v(t) d t$ with a trapezoidal sum using

t	$v(t)$ (seconds)
0	(feet per second)
5	0
10	12
15	20
20	30
25	70
30	78
35	81
40	75
45	60
50	72

3. Use a midpoint Riemann sum with 6 subintervals of equal length to approximate $\int_{2}^{5} \sqrt{x-1} d x$.
4. Use a trapezoidal sum with 6 subintervals of equal length to approximate $\int_{1}^{4} \frac{1}{\sqrt{x}} d x$.

Lesson \#79 HW

5.
Time
\qquad

t (minutes)	$R(t)$ (gallons per minute)
0	20
30	30
40	40
50	55
70	65
90	70

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twicedifferentiable and strictly increasing function R of time t. The graph of R and a table of selected values of $R(t)$, for the time interval $0 \leq t \leq 90$ minutes, are shown above.
A) Approximate the value of $\int_{0}^{90} R(t) d t$ using a trapezoidal approximation with the five subintervals indicated in the table.
B) For $0<b \leq 90$, explain the meaning of $\frac{1}{b} \int_{0}^{b} R(t) d t$ in terms of fuel consumption for the plane, using correct units.
6.

Distance $x(\mathrm{~cm})$	0	1	5	6	8
Temperature $T(x)\left({ }^{\circ} \mathrm{C}\right)$	100	93	70	62	55

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature $T(x)$, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of the wire $x \mathrm{~cm}$ from the heated end. The function T is decreasing and twice differentiable.
(a) Estimate $T^{\prime}(7)$. Show the work that leads to your answer. Indicate units of measure.
(b) Write an integral expression in terms of $T(x)$ for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.

