Namel	Per	Group
-------	-----	-------

Growth and Decay Take Home Quiz

Use a calculator to evaluate answers for #1-5. Include units on answers when applicable.

1. The radioactive element carbon 14 has a half-life of 5750 years. If 100 grams of this element are present initially, how much will be left after 1000 years?

- According to United Nations data, the world population at the beginning of 1975 was approximately 4 billion people and was growing at the rate of 2% per year.
 A. Estimate the world population at the beginning of the year 2000.
 - **B.** In how many years would the population have been doubled?

- 3. The rate of change of the number of bacteria in a culture is proportional to the number present. In a certain lab experiment, a culture had 10,000 bacteria initially, 20,000 bacteria at time t₁ minutes, and 100,000 bacteria at time (t₁+10) minutes.
 A. In terms of t only, find the number of bacteria in the culture at any time t.

 - **B.** How many bacteria were there after 20 minutes?
 - **C.** How many minutes had elapsed when the 20,000 bacteria were observed?

Name	Per	_Group
------	-----	--------

- 4. **MULTIPLE CHOICE**: The amount of a certain bacteria *y* in a petri dish grows according to the equation $\frac{dy}{dt} = ky$, where *k* is a constant and *t* is measured in hours. If the amount of bacteria triples in 10 hours, then what is *k*?
 - A) -1.204
 - B) -.110
 - C) .110
 - D) 1.204
 - E) .3

- 5. **MULTIPLE CHOICE**: Let *y* represent the population in a town. If *y* decreases according the equation $\frac{dy}{dt} = ky$, with *t* measured in years, and the population decreases by 25% in 6 years, then *k*=?
 - A) -8.318
 - B) -1.726
 - C) -.231
 - D) -.120
 - E) -.048

- 6. **MULTIPLE CHOICE**: The weight of a yeast population is given by a differentiable function *y*, where *y*(*t*) is measured in grams and *t* is measured in days. The weight of the yeast population increases according to the equation $\frac{dy}{dt} = ky$, where *k* is a constant. The initial yeast population weighs 120 grams and is increasing at the rate of 24 grams per day. Which of the following is an expression for *y*(*t*)?
 - A) $120e^{24t}$
 - B) 120*e*^{t/5}
 - C) $e^{t/5} + 119$
 - D) 24*t* + 120