\qquad
\qquad

Average and Instantaneous Rates of Change

1. Consider the function $y=2 x^{2}$
A) Find the average rate of change of y with respect to x over the interval $[0,1]$.
B) Find the instantaneous rate of change of y with respect to x for any general point a.
C) Find the instantaneous rate of change of y with respect to x when $x=0$.
2. Consider the function $y=\frac{1}{x}$
A) Find the average rate of change of y with respect to x over the interval $[2,3]$.
B) Find the instantaneous rate of change of y with respect to x for any general point a.
C) Find the instantaneous rate of change of y with respect to x when $x=2$.
3. Consider the function $f(x)=x^{3}-1$
A) Find a formula for the slope of the tangent line to the graph of f at any general point a.
B) Use the formula obtained in part A) to find the slope of the tangent line when $x=-1$
4. Consider the function $f(x)=\sqrt{x}$
A) Find a formula for the slope of the tangent line to the graph of f at any general point a.
\qquad
B) Use the formula obtained in part A) to find the slope of the tangent line when $\mathrm{x}=1$
5. During the first 40 seconds of a rocket flight, the rocket is propelled straight up so that in t seconds it reaches a height of $s(t)=\frac{t^{3}}{\sqrt{10}}$ feet. You may use a calculator on this question.

What is the average velocity of the rocket during the first 40 seconds?
6. A particle moves in the positive direction along a straight line so that after t minutes its distance is $s(t)=6 t^{4}$ feet from the origin.
A) Find the average velocity of the particle over the interval [2,4].
B) Find the instantaneous velocity at $t=2$.
7. Suppose $\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x}=1$. Which of the following must be true? Explain your choice.
A) g is not defined at $x=0$.
B) g is not continuous at $x=0$.
C) The limit of $g(x)$ as x approaches 0 equals 1
D) The instantaneous rate of change of g when $x=0$ is equal to 1 .
E) The average rate of change of g on the interval $[0, x]$ is equal to 1 .
8. Suppose that $\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=5$. Which of the following must be true? Explain your choice.
A) The limit of $f(x)$ as x approaches 2 does not exist.
B) f is not defined at $\mathrm{x}=2$
C) $f(2)=5$
D) The secant slope of f on interval $[2,5]$ is equal to 5
E) The slope of the line tangent of f when $x=2$ is equal to 5
9. Consider the Position vs. Time graph below that models the position of particle, in meters, over time, in seconds.

A) Find the average velocity of the particle on the interval $[3,10]$.
B) Find the instantaneous velocity when $t=4$.
C) Find the instantaneous velocity when $t=8$.
D) Find the instantaneous velocity when $t=11.5$.

