AP Test Prep Questions, Week 2
All of the following questions are NonCalculator. 
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2017, #6 *We did this problem already for hw in our composition book. Feel free to redo it, as there are certain things I want to highlight about this problem during the video session.
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Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for
selected points in the closed interval 2 < x <13.

() Estimate /'(4). Show the work that leads to your answer.

®) Evaluate | 2”(3 ~5/(x)) dx. Show the work that leads to your answer.

(©) Use aleft Riemann sum with subintervals indicated by the data i the table to approximate [ ”/(x) ds.

Show the work that leads to your answer.
(@) Suppose f(5) =3 and f”(x) < 0 forall x in the closed interval 5 < x < 8. Use the line tangent to
the graph of £ at x = 5 to show that f(7) < 4. Use the secant line for the graph of fon 5 < x <8 to

show that £(7) > g.




image7.png
Consider the curve given by the equation y° — xy = 2. It can be shown that %

3y
(a) Write an equation for the line tangent to the curve at the point (-1, 1).

(b) Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical.

2
(c) Evaluate ’:Tf at the point on the curve where x = —1 and y = 1.
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Let f be the function defined by f(x) = cos(2x) + ™.

Let g be a differentiable function. The table above gives values of g and its derivative g’ at selected values
of x.

Let h be the function whose graph, consisting of five line segments, is shown in the figure above.
(2) Find the slope of the line tangent to the graph of fat x = 7.

(b) Let k be the function defined by k(x) = h(f(x)). Find k'(z).

(¢) Let m be the function defined by m(x) = g(—2x) - h(x). Find m'(2).

(d) Is there a number c in the closed interval [—5, —3] such that g’(c) = —4 ? Justify your answer.
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1: answer

5, 1+ Fundamental Theorem of Calculus
11 - answer
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Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for
selected points in the closed interval 2 < x < 13.

(@) Estimate f(4). Show the work that leads to your answer.

(5) Evaluate jz“(z — 5/(x)) dx. Show the work that leads to your answer.

(©) Use alef Riemann sum with subintervals indicated by the data i the table 0 approximate [ /(<) d.

Show the work that leads to your answe.
(@ Suppose f(5) =3 and f"(x) < 0 forall x in the closed interval 5 < x < 8. Use the line tangent to
the graph of f at x = 5 to show that f(7) < 4. Use the secant line for the graph of f on 5< x <8 to

show that f(7) > 3.

@ rio-10=10 1 answer
© [7e-sr)de= ] 3de-] s ar 1 - uses Fundammentl Theorem
=3(13-2)-5(/09 - f@) =8 i ofCaloulus
1sanswer

© [Dr@ = r@)6-2)+ 1G)6-3)
4 f(5)(8-5)+ f(8)(13-8) =18

1:left Riemann sum
11 answer

(@) An equation for the tangent line is y = -2+ 3(x = 5). 1 tangent line
Since f”(x) < 0 forall x in the interval 5 < x <8, the 1:shows /(7)< 4
line tangent to the graph of y = f(x) at x = 5 lies above 1+ secant line
the graph for all x in the interval § < x < 8. Lishows £)2 4

Therefore, f(7) < -2+3-2=4.

An equation for the secant line is y = -2+

-s).
3

Since f”(x) < 0 forall x in the interval § < x <8, the
secant line connecting (5, £(5)) and (8, /(8)) lies below
the graph of y = f(x) forall x in the interval 5 < x < 8.
Therefore, /(7)2-2+5.2= 4.
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(a) f'(x) = ~2sin(2x) + cos x ™"

f'(x) = -2sin(27) + cos 7 M7 = -1

(b) K'(x) = H(f(x))- f'(x)

(0) m'(x) = -2g'(=2x) - h(x) + g(-2x) - H'(x)

w(2) = 2g/(~4)- h(2) + g(~4) K(2)
N 72(71){7§)+ 5[

(d) g is differentiable. = g is continuous on the interval [~5, ~3].
g3 -g(=5) _2-10_

3-(-5) 2

Therefore, by the Mean Value Theorem, there is at least one value c,
~5 < c < -3, such that g'(c) = —4.

2

2 S(7)

L &(3)-g(5)

309

 justification,

using Mean Value Theorem
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The continuous function f is defined on the closed interval —6 < x < 5. The figure above shows a portion of
the graph of f, consisting of two line segments and a quarter of a circle centered at the point (5, 3). It is
known that the point (3, 3 — V/5) is on the graph of /.

5 -2
(a) lf_[ J () dx =7, find the value of_[ o J(x) dx. Show the work that leads to your answer.
5
(b) Evaluate _[3 (2f"(x) +4) dx.

(¢) The function g is given by g(x) = _[‘2 f(1) dr. Find the absolute maximum value of g on the interval

—2 <x < 5. Justify your answer.
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A cylindrical barrel with a diameter of 2 feet contains collected rainwater, as shown in the figure above. The
water drains out through a valve (not shown) at the bottom of the barrel. The rate of change of the height i of

the water in the barrel with respect to time 7 is modeled by % = h, where h is measured in feet and

10

1 is measured in seconds. (The volume V of a cylinder with radius r and height / is V = 2r%h.)

(a) Find the rate of change of the volume of water in the barrel with respect to time when the height of the
water is 4 feet. Indicate units of measure.

(b) When the height of the water is 3 feet, is the rate of change of the height of the water with respect to time
increasing or decreasing? Explain your reasoning.

(¢) Attime 1 = 0 seconds, the height of the water is 5 feet. Use separation of variables to find an expression
for & in terms of 1.
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