1) Definition of the Derivative: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Alternate Form of the Definition: $\quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

2) Definition of Continuous Functions at Point $x=a$

1. $\mathrm{f}(\mathrm{a})$ exists
2. $\lim _{x \rightarrow a} f(x)$ exists. $\left(\lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)\right)$ (Left hand limit matches right hand limit.)
3. $f(a)=\lim _{x \rightarrow a} f(x)$
3) Odd functions: $f(-x)=-f(x)$, Symmetric to origin Even functions: $f(-x)=f(x)$, Symmetric to y axis.
4) Mean Value Theorem Equation: $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ for $a<c<b \quad($ for $f(x)$ continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b))

(Tangent Slope $=$ Secant Slope)

6) First Fundamental Theorem of Calculus:

$\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$
7) Second Fundamental Theorem of Calculus:

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

When Chain Rule applies: $\frac{d}{d x} \int_{a}^{u} f(t) d t=f(u) \frac{d u}{d x}$

8) Approximation of the Area Under a Curve

a) Riemann Sum: Draw a figure and add up the rectangle areas (left, right, midpoint) (with equal width) width= (b-a)/\# of intervals
b) Trapezoids: (with unequal widths) add up areas of all trapezoids $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
(with n equal widths) $A \approx \frac{1}{2} \frac{b-a}{n}\left(f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+\ldots+2 f\left(x_{n}\right)+f\left(x_{n+1}\right)\right)$
12) Growth and Decay Equation
$y=C e^{k t}$ or $y=y_{o} e^{k t}$
13) Trig Limits
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow 0} \frac{x}{\sin x}=1$
$\lim _{h \rightarrow 0} \frac{\cosh -1}{h}=0$
** Remember that we can now use L'Hopital's rule for these limits too

14) Derivative of an Inverse

$\boldsymbol{g}^{\prime}(\boldsymbol{y})=\frac{\mathbf{1}}{\boldsymbol{f}^{\prime}(\boldsymbol{g}(\boldsymbol{y}))}=\frac{\mathbf{1}}{\boldsymbol{f}^{\prime}(\boldsymbol{x})}$ (Easier to just make a table. Image points have reciprocal slopes.)

15) Finding Asymptotes

Horizontal Asymptotes: Bigger on Bottom 0, Bigger on Top None, Exponents are the same Divide Coefficients. Can also use this for limits toward infinity.
Vertical Asymptotes: Factor Denominator and set equal to zero.

16) Finding Zeros

Set numerator equal to zero
17) Position - Velocity - Acceleration
$s(t)$ or $x(t)-v(t)-a(t)$

$$
\begin{array}{ll}
\frac{d}{d t} s(t)=v(t) & \int a(t) d t=v(t)+C \\
\frac{d}{d t} v(t)=a(t) & \int v(t) d t=s(t)+C
\end{array}
$$

$v(t)=0$ implies particle at rest.
$v(t)>0$ implies particle moving to right.
$v(t)<0$ implies particle moving to left.
Speed $=|v(t)|$
Particle speeds up if velocity and acceleration have the same sign. Particle slows down if velocity and acceleration have opposite signs.

18) Intermediate Value Theorem

If f is continuous on a closed interval $[a, b]$ and c is any number between $f(a)$ and $f(b)$ then there is at least one number x in the interval $[a, b]$ such that $f(x)=c$

19) Trig Identities

$$
\sin ^{2} x+\cos ^{2} x=1 \quad \tan ^{2} x+1=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x
$$

20) Average Rate of Change vs. Instantaneous Rate of Change

Average rate of change of a Function on $[\mathbf{a}, \mathbf{b}]: m=\frac{f(b)-f(a)}{b-a} \quad$ (this is just slope between two points)
Instantaneous Rate of Change: use the derivative (slope at one point)

Tangent: $y-y_{1}=m\left(x-x_{1}\right) \quad$ use the derivative to find m
Normal: $\quad y-y_{1}=\frac{-1}{m}\left(x-x_{1}\right)$
22) Curve Sketching for $y=f(x)$:

		$\mathbf{f}^{\prime}(\mathbf{x})$
Increasing		
Decreasing		
Concave Up		
Concave Down		

Max. or Min. Points: Relative: $f^{\prime}(x)=0$ or $f^{\prime}(x)$ undefined. Make an f^{\prime} number line.
Absolute:
Extreme Value Theorem: If a function is continuous on a closed interval [a, \mathbf{b}], then f has both a max value and a min value on $[\mathrm{a}, \mathrm{b}]$.
The candidates are relative extrema or endpoints of a closed interval.
Justifications for Relative Max: f^{\prime} changes from positive to negative Justifications for Relative Min: f^{\prime} changes from negative to positive

Points of Inflection: $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ undefined Make an $f^{\prime \prime}$ number line.
Justifications for Points of Inflection: f^{\prime} changes from decreasing to increasing, f^{\prime} changes from increasing to decreasing, $f^{\prime \prime}$ changes from positive to negative or negative to positive.

23) Squeeze Theorem

The Squeeze Theorem

If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then $\lim _{x \rightarrow a} g(x)=L$

24) Derivatives to Memorize

Product Rule: $\frac{d}{d x}(\mathbf{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}))=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
Quotient Rule $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$
Chain Rule $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
Log Rules: $\frac{d}{d x} \ln x=\frac{1}{x} \quad \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}$
Exponential Rules: $\frac{d}{d x} e^{x}=e^{x} \quad \frac{d}{d x} a^{x}=a^{x} \ln a$

Trig Rules: $\frac{d}{d x} \sin x=\cos x \quad \frac{d}{d x} \cos x=-\sin x$

$$
\begin{array}{ll}
\frac{d}{d x} \tan x=\sec ^{2} x & \frac{d}{d x} \cot x=-\csc ^{2} x \\
\frac{d}{d x} \sec x=\sec x \tan x & \frac{d}{d x} \csc x=-\csc x \cot x
\end{array}
$$

Inverse Trig Rules: $\frac{d}{d x}\left[\sin ^{-1} x\right]=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x}\left[\cos ^{-1} x\right]=\frac{-1}{\sqrt{1-x^{2}}}$

$$
\begin{aligned}
\frac{d}{d x}\left[\tan ^{-1} x\right] & =\frac{1}{1+x^{2}} & \frac{d}{d x}\left[\cot ^{-1} x\right] & =\frac{-1}{1+x^{2}} \\
\frac{d}{d x}\left[\sec ^{-1} x\right] & =\frac{1}{x \sqrt{x^{2}-1}} & \frac{d}{d x}\left[\csc ^{-1} x\right] & =\frac{-1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

** IMPLICIT DIFFERENTIATION can be used when it is inconvenient to solve for y.

25) Integrals to Memorize:

**Use u-substitution if \mathbf{x} is not a singular variable.
Power Rule $\quad \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$

Log Rules

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

Exponential Rules

$$
\begin{gathered}
\int e^{x} d x=e^{x}+C \\
\int a^{x} d x=\frac{a^{x}}{\ln a}+C
\end{gathered}
$$

Trig Rules

$$
\begin{aligned}
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \sec ^{2} x d x=\tan x+C \\
& \int \sec x \tan x d x=\sec x+C \\
& \int \csc ^{2} x d x=-\cot x+C \\
& \int \csc x \cot x d x=-\csc x+C
\end{aligned}
$$

Inverse Trig Rules $\quad \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c \quad \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+c$

$$
\begin{aligned}
\int \frac{1}{1+x^{2}} d x & =\tan ^{-1} x+c
\end{aligned} \quad \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c .
$$

26) Geometry Formulas:

Triangles

-Know how to set up proportions using similar triangles
-Area: $1 / 2$ bh
-Area of Equilateral Triangle: $\frac{s^{2} \sqrt{3}}{4}$

Rectangles

-Area: $A=l \cdot w$
-Perimeter: $P=2 l+2 w$

Circles

-Area: $A=\pi r^{2}$
-Relationship between radius and diameter: $2 \mathrm{r}=\mathrm{d}$
-Circumference: $C=d \pi$

Rectangular Prism/Box

-Volume: $V=l \cdot w \cdot h$
-Surface Area: $S A=2(l w+l h+h w)$

Cylinder

-Volume: $V=\pi r^{2} h$

Sphere

-Volume: $V=\frac{4}{3} \pi r^{3}$
-Surface Area: $S A=4 \pi r^{2}$

Cone

-Volume: $V=\frac{\pi}{3} r^{2} h$

