Calculus AB Formulas

1) Definition of the _____: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ 2) Definition of Continuous Functions at Point x=a 1. f(a) ______. $(\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x))$ (______matches _____) 3. $f(a) = \lim_{x \to a} f(x)$ 3) Odd functions: f(-x) = -f(x), Symmetric to ______. 4) Mean Value Theorem Equation: $f'(c) = \frac{f(b) - f(a)}{b - a}$. for a < c < b (for f(x) continuous on [a, b] and differentiable on (a, b))

6) First Fundamental Theorem of Calculus:

 $\int_{a}^{b} f'(x) dx =$

7) Second Fundamental Theorem of Calculus:

 $\frac{d}{dx}\int_{a}^{x}f(t)dt = \underline{\qquad}$

=

When Chain Rule applies: $\frac{d}{dx}\int_{a}^{u}f(t)dt = f(u)\frac{du}{dx}$

8) Approximation of the Area Under a Curve

- a) Riemann Sum: Draw a figure and add up the <u>rectangle</u> areas

 a. Midpoint, Right-Hand, Left-Hand
 (with equal width) width=______
- **b) Trapezoids:** (with unequal widths) add up areas of all trapezoids A = _____

(with *n* equal widths)
$$A \approx \frac{1}{2} \frac{b-a}{n} (f(x_1) + 2f(x_2) + 2f(x_3) + \dots + 2f(x_n) + f(x_{n+1}))$$

12) Growth and Decay Equation

13) Trig Limits $\lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad} \qquad \lim_{x \to 0} \frac{x}{\sin x} = \underline{\qquad} \qquad \lim_{h \to 0} \frac{\cosh - 1}{h} = \underline{\qquad}$

** Remember that we can now use L'Hopital's rule for these limits too

14) Derivative of an Inverse $g'(y) = \frac{1}{f'(g(y))} = \frac{1}{f'(x)}$ (E	e asier to just memorize	that "Ima	ge points ha	ave		slopes.")	
 15) Finding Asymptotes Horizontal Asymptotes: B at s D (Can also use this for Vertical Asymptotes: Factor 	oB r limits towards	_ 0 , B)ar	0_ nd set equal	_ T to	N	, E	
16) Finding Zeros Set	equal to zero						
17) Position – Velocity – A $s(t)$ or $x(t) - v(t) - a(t)$	cceleration						
$\frac{d}{dt}s(t) = v(t)$	$\int a(t)dt = v(t) + C$						
$\frac{d}{dt}v(t) = a(t)$	$\int v(t)dt = s(t) + C$						
v(t) = 0 implies particle at v(t) > 0 implies particle m $ v(t) _{=}$	oving to	V	(<i>t</i>) < 0 impli	es parti	cle movii	ng to	
Particle	if velocity and acco	eleration h	ave the sam	e sign.	Particle		

if velocity and acceleration have opposite signs.

18) Intermediate Value Theorem

If f is continuous on a closed interval [a,b] and c is any number between f(a) and f(b) then there is at least one number x in the interval [a,b] such that f(x)=c

19) Trig Identities

ig Identities $\sin^2 x + \cos^2 x = 1$ $\tan^2 x + 1 = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

20) Average Rate of Change vs. Instantaneous Rate of Change

Average rate of change of a Function on [a, b]: $m = \frac{f(b) - f(a)}{b - a}$ (this is just slope between two points) Instantaneous Rate of Change: use the derivative (finds slope at one point)

21) Tangent – Normal Lines

Tangent: $y - y_1 = m(x - x_1)$ use the derivative to find m Normal: $y - y_1 = \frac{-1}{m}(x - x_1)$

22) Curve Sketching for y = f(x):

f(x)	f '(x)	f ''(x)
Increasing		
Decreasing		
Concave Up		
Concave Down		

<u>Max. or Min. Points</u>: Relative: f'(x) = 0 or f'(x) undefined. Make an f' number line.

Absolute:

Extreme Value Theorem: If a function is continuous on a closed interval [a,b], then f has both a max value and a min value on [a,b].

The candidates for absolute extrema are relative extrema <u>or endpoints</u> of a closed interval.

Justifications for Relative Max: f' changes from positive to negative Justifications for Relative Min: f' changes from negative to positive

<u>Points of Inflection:</u> f''(x) = 0 or f''(x) undefined Make an f'' number line.

Justifications for Points of Inflection: f' changes from decreasing to increasing, f' changes from increasing to decreasing, f'' changes from positive to negative or negative to positive.

23) Squeeze Theorem

24) Derivatives to Memorize

** IMPLICIT DIFFERENTIATION can be used when it is inconvenient to solve for y.

25) Integrals to Memorize:** Use u-substitution if x is not a singular variable.

Power Rule

Log Rules

Exponential Rules

 $\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$

 $\int e^x dx = \underline{\qquad}$ $\int b^x dx = \underline{\qquad}$

Trig Rules

$$\int \cos x \, dx = \underline{\qquad}$$

$$\int \sin x \, dx = \underline{\qquad}$$

$$\int \sec^2 x \, dx = \underline{\qquad}$$

$$\int \sec x \tan x \, dx = \underline{\qquad}$$

$$\int \csc^2 x \, dx = \underline{\qquad}$$

$$\int \csc^2 x \, dx = \underline{\qquad}$$

$$\int \csc x \cot x \, dx = \underline{\qquad}$$

Inverse Trig Rules
$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + c \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\frac{x}{a} + c$$
$$\int \frac{1}{1+x^2} dx = \tan^{-1}x + c \qquad \int \frac{1}{a^2 + x^2} dx = \frac{1}{a}\tan^{-1}\frac{x}{a} + c$$
$$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1}x + c \qquad \int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a}\sec^{-1}\frac{x}{a} + c$$

26) Geometry Formulas:

Triangles

Rectangles

-Area: $A = l \cdot w$ -Perimeter: P = 2l + 2w **Circles** -Area: $A = _$ _____ -Relationship between radius and diameter: 2r=d-Circumference: $C = _$ ____

Rectangular Prism/Box
-Volume:
$$V = _$$

-Surface Area: $SA = 2(lw + lh + hw)$
Cylinder
-Volume: $V = _$
Sphere
-Volume: $V = _$
-Surface Area: $SA = _$
Cone
-Volume: $V = _$