Sample Question #1

Time Allotted: 25 minutes (then 5 minutes to upload work)

Functions f, g, and h are twice-differentiable functions with g(5) = h(5) = 1.

The line $y = 1 - \frac{5}{3}(x - 5)$ is tangent to both the graph of g at x = 5 and the graph of h at x = 5.

- (a) Find g'(5).
- (b) Let b be the function given by $b(x) = 2x^2 g(x)$. Write an expression for b'(x). Find b'(5).
- (c) Let w be the function given by $w(x) = \frac{3h(x) x}{2x + 1}$. Write an expression for w'(x). Find w'(5).
- (d) Let $M(x) = \frac{d}{dx} \left[\int_{0}^{2x} g(t) dt \right]$. Write an expression for M'(x). Find M'(2.5).
- (e) Let $M(x) = \frac{d}{dx} \left[\int_{0}^{2x} g(t) dt \right]$. It is known that c = 2.5 satisfies the conclusion of the Mean Value

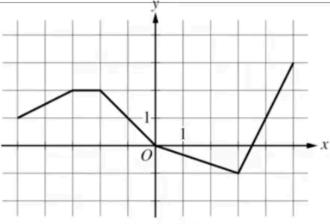
Theorem applied to M(x) on the interval $1 \le x \le 4$. Use M'(2.5) to find g(8) - g(2).

- (f) The function g satisfies $g(x) = \frac{x + 5\cos\left(\frac{1}{5}\pi x\right)}{3 \sqrt{f(x)}}$ for $x \neq 5$. It is known that $\lim_{x \to 5} g(x)$ can be evaluated using L'Hospital's Rule. Use $\lim_{x \to 5} g(x)$ to find f(5) and f'(5). Show the work that leads to your answers.
- (g) It is known that $h(x) \le g(x)$ for 4 < x < 6. Let k be a function satisfying $h(x) \le k(x) \le g(x)$ for 4 < x < 6. Is k continuous at x = 5? Justify your answer.

Sample Question #2

Time Allotted: 15 minutes (then 5 minutes to upload work)

X	g(x)	g'(x)
-5	10	-3
-4	5	-1
-3	2	4
-2	3	_ 1
-1	1	-2
0	0	-3



Graph of h

Let *f* be the function defined by $f(x) = \sin(\pi x) + \ln(2 - x)$.

Let g be a twice differentiable function. The table above gives values of g and its derivative g' at selected values of x.

Let h be the function whose graph, consisting of five line segments, is shown in the figure above.

- (a) Find the slope of the line tangent to the graph of f at x = 1.
- (b) Let k be the function defined by k(x) = h(f(x) + 2). Find k'(1).
- (c) Evaluate $\int_{-5}^{-1} g'(x)dx$.
- (d) Rewrite $\lim_{n\to\infty}\sum_{k=1}^n \left(h\left(-1+\frac{5k}{n}\right)\right)\frac{5}{n}$ as a definite integral in terms of h(x) with a lower bound of x=-1.

Evaluate the definite integral.

(e) What is the fewest number of horizontal tangents g(x) has on the interval -5 < x < 0? Justify your answer.