College Board Mock Exam \#1
Question 1
(a)

$$
\begin{aligned}
& f^{\prime}(t) v_{p}(t)+f(t) v_{p}^{\prime}(t) \\
& f^{\prime}(1) v_{p}(1)+f(1) v_{p}^{\prime}(1)=2(-29)+1(-10)+1 \text { answer w/ work }
\end{aligned}
$$

(b) $\frac{1}{2}(.3)(0+55)+\frac{1}{2}(.7)(55+-29)+\frac{1}{2}(1.8)(-29+55)+1$ trapezoidal sum
(C)

$$
\begin{aligned}
& \int_{-6}^{5} f(t) d t=\int_{-6}^{-2} f(t) d t+\int_{-2}^{5} f(t) d t+1 \text { Brook larger integral into } \\
& 7=\int_{-6}^{-2} f\left(t 1 d t+\frac{1}{2}(1+3)(1)+3(3)-\frac{1}{4} \pi(3)^{2}\right. \\
& \int_{-6}^{-2} f(t) d t=7-\left(\frac{1}{2}(1+3)+3(3)-\frac{1}{4} \pi(3)^{2}\right.
\end{aligned}+1 \text { answer under curve for } \int_{-2}^{5} f(t) d t
$$

(d)

$$
\begin{aligned}
\int_{3}^{5} 2 f^{\prime}(t)+4 d t & =2 f(t)+\left.4 t\right|_{3} ^{5}+1 \text { fist Fundamental thereon applied } \\
& =2 f(5)+4(5)-2 f(3)-4(3) \\
& =0+20-2(3-\sqrt{5})-12+1 \text { answer }
\end{aligned}
$$

(e) $g(t)=\int_{-2}^{t} f(x) d x \Rightarrow g^{\prime}(t)=f(t)+1 g^{\prime}(t)=f(t)$
$f(t)$ changes from pos to reg when $x=-1 \Rightarrow$ relative max.

$$
\begin{aligned}
& \left.f(t)\right|^{-2} \text { changes from pas to neg (answerer is reactive area since bounds } \\
& g(-1)=\int_{-2}^{-1} f(t) d t=-\frac{1}{2}(1)(1)=-\frac{1}{2} \text { bacesuards) } \\
& +1 \text { considers } x=-1 \text { ar candidate }
\end{aligned}
$$

$g(5)=-\frac{2}{1}-\frac{9 \pi}{4} \quad$ Abs Max of g in $11-\frac{9 \pi}{4}$ on $[-2,5]$

$$
g(-1)=\int_{-2}^{-2} f(t) d t=0
$$

(f)

$$
\begin{aligned}
& g^{\prime}(t)=f(t) \\
& g^{\prime \prime}(t)=f^{\prime}(t) \quad+1 \quad g^{\prime \prime}(t)=f^{\prime}(t)
\end{aligned}
$$

Tho rate of change of g is decreasing when $t=3$
since f is decreasing, $f^{\prime}(3)$ is regative
+1 answer w/ reason
(9)

$$
\begin{aligned}
& \lim _{t \rightarrow 1} \frac{e^{t}-3 f(t)}{v_{p}(t)-\cos \pi t} \quad \begin{array}{l}
\text { since } \left.v_{p} / t\right) \\
\text { continuous. so differentiable, } V_{p}(t) \text { in } V_{p}(t)=v_{p}(1) \\
\\
=\frac{e^{\prime}-3 f(1)}{v_{p}(1)-\cos \pi}=\frac{e-3}{-29+1}=\frac{e-3}{-28} \quad \text { description of } \\
\text { vp it) being continuous }
\end{array} \\
& +1 \text { answer }
\end{aligned}
$$

Question \#2
(a)

$$
\begin{aligned}
& \frac{d V}{d t}=2 \pi r \cdot \frac{d r}{d t} h+\pi r^{2} \cdot \frac{d h}{d t} \\
& \frac{d V}{d t}=\pi(3)^{2}\left(-\frac{1}{5} \sqrt{10}\right) \mathrm{m}^{3} / \mathrm{s}
\end{aligned}
$$

$\frac{d r}{d t}=0$ since r is constant.
$+1 \frac{d V}{d t}$ expression
+1 answer w/ units
(b)

$$
\begin{aligned}
\frac{d^{2} h}{d t^{2}} & =-\frac{1}{5} \cdot \frac{1}{2} h^{-1 / 2} \cdot \frac{d h}{d t} \\
& =-\frac{1}{10} \cdot \frac{1}{\sqrt{h}} \cdot\left(-\frac{1}{5} \sqrt{h}\right) \\
& =\frac{1}{50} \cdot \frac{1}{\sqrt{8}} \cdot \sqrt{8}=\frac{1}{50}
\end{aligned}
$$

+2 derivative w/ chain and implicit
Rate of change of height in increasing since $\frac{d^{2} h}{d t^{2}}$ is positive +1 answer w/ reason
(c)

$$
\begin{aligned}
& \int \sqrt{h} \\
& \int h^{-1 / 2} d h=\int_{-\frac{1}{5} d t}^{5}+1 \text { antidenvatives } \quad 2 h^{1 / 2}=-\frac{1}{5} t+8 \\
& 2 h^{1 / 2}=-\frac{1}{5} t+C \\
& 2 \sqrt{16}=-\frac{1}{5}(0)+C+1 \text { for }+c \quad \text { ard } \\
& c=8 \quad h=\left(-\frac{1}{10} t+4\right)^{2} \\
& c \text { incing } \\
& \text { initial condition }
\end{aligned}
$$

Note: $\max 0 / 4$ if no separation. and $\operatorname{Max} 2 / 4$ if no $+c$.

Suggested Scoring:

Raw Score:	Exam Score:
$14-23$	5
$12-13$	4
$9-11$	3
$6-8$	2
$0-5$	1

As previously mentioned, College Board has not predetermined the scores needed to earn a 3,4 , or 5 for this year. Instead, they will curve the scores to match the percentages of previous years. However, Q1 will be worth 60% of your overall score and Q2 will be worth 40%. This rubric is just meant to be a helpful tool to gauge your performance.

