A particle moves along the x-axis. The velocity of the particle is modeled by a strictly decreasing, twice differentiable function $v(t)$ measured in meters per second. Select values of $v(t)$ at specific times t, measured in seconds, are given below. It is known at time $t=7$, the particle's position is 3 units to the right of the origin.

t (seconds)	2	3	5	7	9
$v(t)$ (meters per second)	3	1	0	-6	-8

(a) Estimate $v^{\prime}(2.5)$ and $v^{\prime}(6)$. Interpret the meanings in context including units.
(b) State whether the particle is speeding up or slowing down at both $t=2.5$ and $t=6$.
(c) The particle's position is modeled by the function $P(t)$. Write an equation of the tangent line to the graph of P at $t=7$. Use the tangent line to approximate $P(8)$.
(d) Is the estimate in part (c) an under approximation or over approximation of $P(8)$? Explain how you know.
(e) Claire, a calculus student, uses a left Riemann sum of three subintervals to approximate $\int_{2}^{7} v(t) d t$. Is her approximation an overestimate or underestimate of the actual value? Explain how you know.
(f) Another particle Q is also moving along the x-axis. Let $Q(x)=4+5 x-x^{2}$. State open interval(s) during $2 \leq t \leq 9$ when particle P and particle Q are moving in the same direction.

Answer Key to AP Live Last Review
(a) $v^{\prime}(2.5) \approx \frac{v(3)-v(2)}{3-2}=\frac{1-3}{1}=-2 \mathrm{~m} / \mathrm{s}^{2}$

At 2.5 seconds, the particle velocity in decreasing at alate of $2 \mathrm{~m} / \mathrm{s}^{2}$.

$$
v^{\prime}(6) \approx \frac{v(7)-v(5)}{7 \cdot 5}=\frac{-6-0}{2}=-3 \mathrm{~m} / \mathrm{s}^{2}
$$

At 6 seconds, the particles velocity is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$.
(b) since $v(t)$ is strictly decreasing, $a(t)$ in always negative. ALS0, if $v(t)$ is strictly decreasing and differentiable, then $V(3)<V(2.5)<V(2)$ so $1<V(2.5)<3$. no $V(2.5)$ is positive. no partide is slowing down when $t=2.5$ since $v(2.5)$ and $a(2.5)$ are opposite signs. similarly, $V(7)<v(6)<v(5)$, so $-6<v(6)<0$, so $V(6)$ is negative. so particle is speeding up when $t=4$ since $v(6)$ and $a / 6)$ are the same sign.
(C)

$$
\begin{aligned}
& y-3=-6(x-7) \\
& y-3=-6(8-7) \\
& p(8) \approx-6+3
\end{aligned}
$$

(d) The approximation in part C is an overestimate since $v(t)$ is strictly decreasing, $a(t)$ is strictly negative, so $P(t)$ is concave down.
(e) Her Riemann sum would be an overestimate since $v(t)$ is strictly decreasing and shes using a Left-nand sum.
Note: the question did not ask us to find the sum. If it did, the answer/ work would be:

$$
1(3)+2(1)+2(0)
$$

(f)

$$
\begin{aligned}
Q(x) & =4+5 x-x^{2} \\
Q^{\prime}(x) & =5-2 x \\
0 & =5-2 x \\
& x=5 / 2
\end{aligned}
$$

$(2,5 / 2) \cup(5,9)$ since $v(t)$ and $Q^{\prime}(x)$ have the came signs

