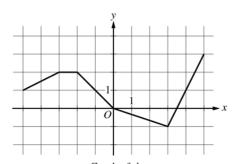
AP FR Questions with Tables (Noncalculator)

2016

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.


(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate $\int_{1}^{3} f''(2x) dx$.

2017

х	g(x)	<i>g</i> ′(<i>x</i>)
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

Graph of h

Let f be the function defined by $f(x) = \cos(2x) + e^{\sin x}$.

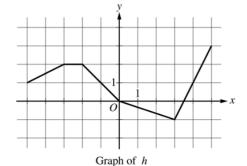
Let g be a differentiable function. The table above gives values of g and its derivative g' at selected values of x.

Let h be the function whose graph, consisting of five line segments, is shown in the figure above.

- (a) Find the slope of the line tangent to the graph of f at $x = \pi$.
- (b) Let k be the function defined by k(x) = h(f(x)). Find $k'(\pi)$.
- (c) Let m be the function defined by $m(x) = g(-2x) \cdot h(x)$. Find m'(2).
- (d) Is there a number c in the closed interval [-5, -3] such that g'(c) = -4? Justify your answer.

AP FR Questions with Tables (Noncalculator)

2016


х	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

- (a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.
- (b) Let $h(x) = \frac{g(x)}{f(x)}$. Find h'(1).
- (c) Evaluate $\int_{1}^{3} f''(2x) dx$.

2017

х	g(x)	g'(x)
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

Let f be the function defined by $f(x) = \cos(2x) + e^{\sin x}$.

Let g be a differentiable function. The table above gives values of g and its derivative g' at selected values of x.

Let h be the function whose graph, consisting of five line segments, is shown in the figure above.

- (a) Find the slope of the line tangent to the graph of f at $x = \pi$.
- (b) Let k be the function defined by k(x) = h(f(x)). Find $k'(\pi)$.
- (c) Let m be the function defined by $m(x) = g(-2x) \cdot h(x)$. Find m'(2).
- (d) Is there a number c in the closed interval [-5, -3] such that g'(c) = -4? Justify your answer.