(a) $k(3)=f(g(3))=f(6)=4$ $k^{\prime}(3)=f^{\prime}(g(3)) \cdot g^{\prime}(3)=f^{\prime}(6) \cdot 2=5 \cdot 2=10$
$3:\left\{\begin{array}{l}2: \text { slope at } x=3 \\ 1: \text { equation for tangent line }\end{array}\right.$

An equation for the tangent line is $y=10(x-3)+4$.
(b) $h^{\prime}(1)=\frac{f(1) \cdot g^{\prime}(1)-g(1) \cdot f^{\prime}(1)}{(f(1))^{2}}$

$$
=\frac{(-6) \cdot 8-2 \cdot 3}{(-6)^{2}}=\frac{-54}{36}=-\frac{3}{2}
$$

(c) $\int_{1}^{3} f^{\prime \prime}(2 x) d x=\frac{1}{2}\left[f^{\prime}(2 x)\right]_{1}^{3}=\frac{1}{2}\left[f^{\prime}(6)-f^{\prime}(2)\right]$

$$
=\frac{1}{2}[5-(-2)]=\frac{7}{2}
$$

$3:\left\{\begin{array}{l}2: \text { expression for } h^{\prime}(1) \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$

*Additional notes:

For (a), point-slope form for your tangent line is fine.
For (c), the rubric does u-substitution with the method of changing back to x . You can also solve this problem with u-substitution and changing the bounds.

2017 Table Question

(a) $f^{\prime}(x)=-2 \sin (2 x)+\cos x e^{\sin x}$

$$
f^{\prime}(\pi)=-2 \sin (2 \pi)+\cos \pi e^{\sin \pi}=-1
$$

(b) $k^{\prime}(x)=h^{\prime}(f(x)) \cdot f^{\prime}(x)$

$$
\begin{aligned}
k^{\prime}(\pi) & =h^{\prime}(f(\pi)) \cdot f^{\prime}(\pi)=h^{\prime}(2) \cdot(-1) \\
& =\left(-\frac{1}{3}\right)(-1)=\frac{1}{3}
\end{aligned}
$$

(c) $m^{\prime}(x)=-2 g^{\prime}(-2 x) \cdot h(x)+g(-2 x) \cdot h^{\prime}(x)$

$$
\begin{aligned}
m^{\prime}(2) & =-2 g^{\prime}(-4) \cdot h(2)+g(-4) \cdot h^{\prime}(2) \\
& =-2(-1)\left(-\frac{2}{3}\right)+5\left(-\frac{1}{3}\right)=-3
\end{aligned}
$$

(d) g is differentiable. $\Rightarrow g$ is continuous on the interval $[-5,-3]$.
$\frac{g(-3)-g(-5)}{-3-(-5)}=\frac{2-10}{2}=-4$
Therefore, by the Mean Value Theorem, there is at least one value c, $-5<c<-3$, such that $g^{\prime}(c)=-4$.
$2: f^{\prime}(\pi)$
$2:\left\{\begin{array}{l}1: k^{\prime}(x) \\ 1: k^{\prime}(\pi)\end{array}\right.$
$3:\left\{\begin{array}{l}2: m^{\prime}(x) \\ 1: m^{\prime}(2)\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{g(-3)-g(-5)}{-3-(-5)}\end{array}\right.$
1 : justification, using Mean Value Theorem

