$$
f(t)= \begin{cases}g(t) & \text { for } 0 \leq t \leq 12 \\ \frac{t^{2}}{8}-3 t+83 & \text { for } 12<t \leq 24\end{cases}
$$

t (hours)	0	4	6	8	12
$g(t)$ (degrees Fahrenheit)	87	81.5	76	70.5	65

The temperature of a room, in degrees Fahrenheit, on a certain day is modeled by the function f defined above, where g is a continuous function and t is measured in hours. Values of $g(t)$ at selected values of t are given in the table above.
(a) According to the model f, what is the average rate of change of the temperature of the room over the time interval $0 \leq t \leq 12$ hours? Include units on your answer.
(b) Use the data in the table to approximate $f^{\prime}(10)$. Show the computations that lead to your answer.
(c) Is f continuous when $t=12$? Justify your answer.
(d) Find the exact value of $f^{\prime}(20)$. Interpret the meaning of this value in the context of the problem.

