Review:

Simplify. Identify any x-values for which the expression is undefined.

$$
\frac{x^{2}+5 x+4}{x^{2}-1} \quad \frac{x^{2}-8 x+12}{x^{2}-12 x+36}
$$

The parent rational function is $f(x)=\frac{1}{x}$

Domain:

Range:

Asymptote(s):

A vertical asymptote is a vertical line that the function cannot cross.
$>$ Where the denominator is equal to 0
A horizontal asymptote follows the end behavior of the rational function.
** Remember: ASYMPTOTES ARE EQUATIONS

Identify the domain, range, and asymptotes of each function.

1. Graph: $y=\frac{1}{x}+3$
2. Graph: $y=\frac{1}{x-2}$
3. Graph: $y=\frac{1}{x+1}-2$

Describe the end behavior of each of the previous problems.
1.
2.
3.

Identify the transformations:

1. $y=\frac{-1}{x}+1$
2. $y=\frac{1}{x-7}$
3. $y=\frac{2}{x-2}$

Identify all asymptotes:

1.
2.
3.

Example \#2:
Graph the function.

$$
p(x)=\frac{x-2}{x^{2}+4 x-12}
$$

Holes:
If a rational function has the same factor, ($x-b$), in both the numerator and denominator, then there is a hole in the graph at the point where $x=b$.
$>$ A vertical asymptote is NOT the same thing as a hole

Example \#3:

Graph and identify any zeros, asymptotes, and holes.

$$
k(x)=\frac{4 x^{4}-3 x^{3}}{8 x-6}
$$

Example \#4:

Graph and identify any zeros, asymptotes, and holes.
$f(x)=\frac{x^{2}+4 x-12}{x-2}$

You try: Identify any holes or asymptotes. Then graph.

Horizontal Asymptote Rules:

Case \#1: When the degree of the numerator is less than the degree of the denominator

Case \#2: When the degree of the numerator is greater than the degree of the denominator

Case \#3: When the degrees are equal

