## Change to logarithmic form:

1. $3^{4}=81$
2. $\left(\frac{1}{4}\right)^{-1}=4$
3. $11^{-2}=\frac{1}{121}$
4. $15^{1}=15$

## Change to exponential form:

5. $\log _{6} 216=3$
6. $\log _{1 / 4} 16=-2$
7. $\log _{16} \frac{1}{4}=-\frac{1}{2}$
8. $\log 1=0$

## Sketch the graphs and answer the following questions.

9. $f(x)=3^{x}+1$


Domain $\qquad$
Range $\qquad$
Asymptote? $\qquad$
End Behavior?
Parent Function?
10. $f(x)=2^{x-1}-1$


Domain $\qquad$
Range $\qquad$
Asymptote? $\qquad$
End Behavior?
Parent Function?
11. $f(x)=\left(\frac{1}{2}\right)^{x+1}$


Domain $\qquad$
Range $\qquad$
Asymptote? $\qquad$
End Behavior?
Parent Function?
12. Find the $15^{\text {th }}$ term of the sequence: $10,2,-6,-14, \ldots$ Then find the sum of the first 15 terms.
13. Find $S_{9}$ for $-8+1.6-3.2+0.64-\ldots$
14. Evaluate.
15. Find the infinite sum, if possible: $24+6+1.5+.375+\ldots$

$$
\sum_{k=1}^{30} 12 k+2
$$

16. Consider the function $\mathrm{h}(\mathrm{x})=4 \log _{6}(\mathrm{x}-5)$
A. Identify the parent function.
B. Describe the transformations of $\mathrm{h}(\mathrm{x})$ from the parent function identified above.
C. State the domain, range, and any asymptotes for $\mathrm{h}(\mathrm{x})$.
17. A new car is purchased for $\$ 28,000$. Sadly, it depreciates by $13 \%$ annually. When will the car be worth a quarter of its original value?

## Solve for $x$ :

18. $\log _{1 / 2} 8=x$
19. $\log _{x} 32=-5$
20. $8^{x}=\frac{1}{64}$
21. $3^{x}=81$
22. $2^{\mathrm{x}}=8^{\mathrm{x}+1}$
23. $9^{x-1}=27^{3-x}$
24. $\log _{8}\left(x^{2}-2 x\right)=\log _{8} 3$
25. $\ln \left(\frac{x}{2}\right)=\ln \left(\frac{3}{x+1}\right)$

## Simplify:

26. $\ln e$
27. $\log 1$
28. $6 \log _{5} 125$
29. $\log _{7} 7^{-3 x}$
30. Daniel invests $\$ 1500$ in a bank with an interest rate of $7.2 \%$ that is compounded continuously. How much money will be in the bank after 13 years?
