1) Express as a single log: a) $3 \log _{4} 2-\log _{4} 2$ b) $\log 3+\log 5$ c) $3 \log _{4} 2-\log _{4} 2+\log _{4} 3$	7) Find the common ratio: $\frac{1}{4}, \frac{1}{12}, \frac{1}{36}, \frac{1}{108}, \ldots$	13) Subtract: $\frac{3 x^{2}-1}{x^{2}-3 x-18}-\frac{x+2}{x-6}$	19) Solve: $0.25^{x}=8^{x-1}$
2) Simplify: $\frac{\log _{2} 2^{x+5}+\log _{5} 5^{6}}{\log _{2} 32}$	8) Find the sum of the geometric series below $\sum_{n=1}^{\infty} 60\left(\frac{1}{10}\right)^{n}$	14) Multiply: $\frac{4 x^{3}+12 x^{2}}{2 x^{3}-16 x^{2}} \cdot \frac{2 x^{2}-10 x-48}{x+3}$	20) Use the function: $f(x)=\frac{x^{5}}{x^{3}}$ Identify the following: a. hole(s)/asymptote(s) b. sketch the graph
3) Rewrite in exponential form, then evaluate: $\log _{4} \frac{1}{16}=x$	9) Evaluate: $\sum_{n=2}^{5} 2^{n-1}$	15) Solve: $\frac{1}{x-1}+\frac{4}{x+1}=\frac{7}{x^{2}-1}$	21) Describe the transformations $\mathrm{f}(\mathrm{x})=\sqrt{-(x-2)}+3$
4) Solve: $2 \log _{3} x-\log _{3} 4=2$	10) What is S_{30} for $40+30+20+$ $10+\ldots$?	16) Solve: $x+6=(4 x+21)^{\frac{1}{2}}$	22) Solve: $\sqrt[3]{x+6}=2 \sqrt[3]{x-1}$
5) Evaluate $\operatorname{Cos}^{-1}\left(-\frac{\sqrt{3}}{2}\right)$	11) Find the $10^{\text {th }}$ term of the geometric sequence with $a_{5}=96$ and $a_{7}=384$.	17) Solve: $\frac{2 x+1}{x} \geq 3$	23) A skier begins at a lodge and travels 3 miles to a pond. The skier turns around and travels 3 miles back to the lodge. The wind speed
6) Describe the transformations and asymptotes of: a) $y=-\ln (3 x)+5$ b) $y=4(e)^{-x}-3$	12) A movie earned $\$ 50 \mathrm{M}$ in the first week that it was released. In each successive week, sales declined by 20%. How much money from sales was made in week 12?	18) Use the function: $f(x)=\frac{x-2}{x^{2}-2 x-3}$ Identify the following: a. zeros b. asymptotes c. End Behavior	was 7 miles per hour and the speed of the skier, without wind speed, was x miles per hour. a. Write the expressions for the skier's speed traveling to the pond and back to the lodge. b. Write a rational equation that would represent the total time traveled $t(x)$.

