Introduction to Counting

Example \#1: (Tree Diagram)

You are at a carnival. One of the carnival games asks you to pick a door and then pick a curtain behind the door. There are 3 doors and 4 curtains behind each door. Create a tree diagram that represents this situation.

You try: (Tree Diagram)

A choice of pizza or spaghetti; a choice of milk or juice to drink; a choice of pudding or an apple for dessert

The Fundamental Counting Principle is a way to figure out the total number of ways different events can occur. The possible outcomes is the product of the decisions.
$>$ When there are \mathbf{m} ways to do one thing, and \mathbf{n} ways to do another, then there are $\mathbf{m \times n}$ ways of doing both.

Example \#2:

Yogurt Parfait (Choose 1 of each) FlavorFruit Plain		
Peaches	Nuts	
Vanilla	Strawberries	Peanuts
	Bananas	Walnuts
	Raspberries	
	Blueberries	

To make a yogurt parfait, you choose one flavor of yogurt, one fruit topping, and one nut topping. How many parfait choices are there?

Example \#3:
There are 10 questions on a True/False test. How many different outcomes are there of student responses?

Factorial -- the product of the natural numbers less than or equal to the number.
$>$ Let n be the number of items: $n \bullet(n-1) \bullet(n-2) \bullet(n-3) \ldots(1)$
Example: Find 6!
Permutations -- All possible arrangements of a collection of items where the order is important. ORDER MATTERS!

Example \#4:
Suppose that I wanted to call on three of you to answer 3 different questions. I only want 3 out of 30 students. How many possibilities for students can I have?

Example \#5:

A coach must choose how to line up his five starters from a team of 12 players. How many different ways can the coach choose the starters' arrangement?

Example \#6:
STANDARD DECK = 52 cards
SUITS: 13 hearts, 13 diamonds, 13 spades, 13 clubs

- Hearts and diamonds are red
- Spades and clubs are black
- There are 10 number cards (including the Ace) in each suit.
- There are 3 face cards (Jack, Queen, and King) in each suit.
a) How many possibilities are there of drawing 2 black cards and 1 red card when drawing 3 cards without replacement?
b) How many possibilities of drawing three kings, 1 queen, and a " 6 " when drawing 5 cards without replacement?

Permutations

NUMBERS	ALGEBRA
The number of permutations of 7 items taken 3 at a time is	The number of permutations of n items taken r at a time is
${ }_{7} P_{3}=\frac{7!}{(7-3)!}=\frac{7!}{4!}$.	${ }_{n} P_{r}=\frac{n!}{(n-r)!}$.

A combination is a grouping of items in which order does NOT matter. There are generally fewer ways to select items when order does not matter.
$>$ Think of as "choosing" not "arranging"
6 permutations $\rightarrow\{\mathrm{ABC}, \mathrm{ACB}, \mathrm{BAC}, \mathrm{BCA}, \mathrm{CAB}, \mathrm{CBA}\}$
1 combination $\rightarrow\{\mathrm{ABC}\}$

Example \#7: The track team has 10 qualified runners for the 2-mile race. Three runners will be selected to run in the first heat. How many ways can the runners be selected?
(Notice how I did not ask how I could order them for the race)

Example \#8: A team of 17 softball players needs to choose three players to refill the water cooler. How many ways could these players be selected?

\section*{Combinations
 | NUMBERS | ALGEBRA |
| :---: | :---: |
| The number of combinations
 of 7 items taken 3 at a
 time is | The number of combinations
 of n items taken r at a
 time is |
| ${ }_{7} C_{3}=\frac{7!}{3!(7-3)!}$. | ${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$. |}

Find ${ }_{10} \mathrm{C}_{4}$ and ${ }_{12} \mathrm{C}_{7}$. How do these compare to ${ }_{10} \mathrm{P}_{4}$ and ${ }_{12} \mathrm{P}_{7}$?

