Introduction to Counting

Example #1: (Tree Diagram)

You are at a carnival. One of the carnival games asks you to pick a door and then pick a curtain behind the door. There are 3 doors and 4 curtains behind each door. Create a tree diagram that represents this situation.

You try: (Tree Diagram)

A choice of pizza or spaghetti; a choice of milk or juice to drink; a choice of pudding or an apple for dessert

The **Fundamental Counting Principle** is a way to figure out the total number of ways different events can occur. The possible outcomes is the product of the decisions.

When there are m ways to do one thing, and n ways to do another, then there are m×n ways of doing both.

► Example #2:

Yogurt Parfait (Choose 1 of each)			
Flavor	Fruit	Nuts	
Plain	Peaches	Almonds	
Vanilla	Strawberries	Peanuts	
	Bananas	Walnuts	
	Raspberries		
	Blueberries		

To make a yogurt parfait, you choose one flavor of yogurt, one fruit topping, and one nut topping. How many parfait choices are there?

Example #3:

There are 10 questions on a True/False test. How many different outcomes are there of student responses?

Factorial -- the product of the natural numbers less than or equal to the number.

> Let *n* be the number of items: $n \bullet (n-1) \bullet (n-2) \bullet (n-3) \dots (1)$

Example: Find 6!

Permutations -- All possible arrangements of a collection of items where the order is important. ORDER MATTERS!

Example #4:

Suppose that I wanted to call on three of you to answer 3 different questions. I only want 3 out of 30 students. How many possibilities for students can I have?

Permutations/Combinations

Example #5:

A coach must choose how to line up his five starters from a team of 12 players. How many different ways can the coach choose the starters' arrangement?

Example #6: **STANDARD DECK** = 52 cards **SUITS:** 13 hearts, 13 diamonds, 13 spades, 13 clubs

- Hearts and diamonds are red
- Spades and clubs are black
- There are 10 number cards (including the Ace) in each suit.
- There are 3 face cards (Jack, Queen, and King) in each suit.
 - a) How many possibilities are there of drawing 2 black cards and 1 red card when drawing 3 cards without replacement?
 - b) How many possibilities of drawing three kings, 1 queen, and a "6" when drawing 5 cards without replacement?

Permutations			
NUMBERS		ALGEBRA	
		The number of permutations	
of 7 items taken 3 at a time		of <i>n</i> items taken <i>r</i> at a time	
is		is	
	$_{7}P_{3} = \frac{7!}{(7-3)!} = \frac{7!}{4!}.$	${}_{n}P_{r}=\frac{n!}{(n-r)!}.$	

A **<u>combination</u>** is a grouping of items in which order does NOT matter. There are generally fewer ways to select items when order does not matter.

Think of as "choosing" not "arranging"

6 permutations \rightarrow {ABC, ACB, BAC, BCA, CAB, CBA} 1 combination \rightarrow {ABC}

Example #7: The track team has 10 qualified runners for the 2-mile race. Three runners will be selected to run in the first heat. How many ways can the runners be selected? (Notice how I did not ask how I could order them for the race)

Example #8: A team of 17 softball players needs to choose three players to refill the water cooler. How many ways could these players be selected?

Combinations			
ALGEBRA			
The number of combinations			
of <i>n</i> items taken <i>r</i> at a			
time is			
${}_{n}C_{r}=\frac{n!}{r!(n-r)!}.$			

Find ${}_{10}C_4$ and ${}_{12}C_7$. How do these compare to ${}_{10}P_4$ and ${}_{12}P_7$?