Inverse Functions

Functions that undo each other are called inverse functions.
$>$ If $f(x)$ is the original function, then $f^{-1}(x)$ is its inverse.
$>$ The domain of f becomes the range of f^{-1}
$>$ The range of f is the domain of f^{-1}.

Mapping Pattern:

If you're trying to find the inverse, you switch the x and y variables, and solve for y in the new equation.

Example \#1: Find the inverse of $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2 x}+\mathbf{6}$.

Example \#2: Find the inverse of $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{2}-25$.

Horizontal Line Test: An inverse function exists if and only if the original function passes the horizontal line test. Otherwise, the inverse is a relation.

You try: Find the inverse of $h(x)=4 x+8$
Find the inverse of $k(x)=x^{2}-4$

Example \#3: Find the inverse of $\boldsymbol{p}(\boldsymbol{x})=\frac{\boldsymbol{x}}{\boldsymbol{x}+1}$

You try: Find $f^{-1}(x)$ if $\boldsymbol{f}(\boldsymbol{x})=\frac{x}{x-3}$

