Rational Expressions

Rational Expression: a quotient of two polynomials
$>$ Rational expressions are undefined at values that make the denominator equal to 0

Example \#1:
Determine what values of x make the expression undefined. $x^{2}-6 x+5$
$x^{2}-3 x-10$

Now simplify the expression in example \#1.

Example \#2: Simplify and identify any restrictions for x.

$$
\frac{2 x^{2}+7 x+3}{x^{2}+7 x+12}
$$

You try: Simplify and identify any restrictions for x.
a. $\frac{x^{2}+20 x+36}{x^{3}-4 x}$
b. $\frac{x^{2}-2 x-15}{2 x^{2}+3 x-9}$

Example \#3: Multiply and identify any restrictions for x $\frac{x-3}{4 x+20} \cdot \frac{x+5}{x^{2}-9}$

Example \#4: Multiply and identify any restrictions for x

$$
\frac{2 x+4}{x^{2}-25} \cdot \frac{x^{2}-5 x-50}{4 x^{2}-16}
$$

You try:

$$
\frac{10 x-40}{x^{2}-6 x+8} \cdot \frac{x+3}{5 x+15}
$$

Example \#5: Divide. Assume all variables are defined.

$$
\frac{x^{2}+5 x+6}{x^{2}-4} \div \frac{5 x+15}{3 x^{2}-4 x-4}
$$

You try: Divide. Assume all variables are defined.

$$
\frac{x^{2}-25}{x^{2}+6 x-7} \div \frac{x^{2}+13 x+40}{x^{2}+7 x-8}
$$

Adding/Subtracting Rational Expressions

Example \#1:
Add or subtract. Identify any x-values for which the expression is undefined.

$$
\frac{x-3}{x+4}+\frac{x-2}{x+4}
$$

You try:

$$
\frac{3 x^{2}-5}{3 x-1}-\frac{2 x^{2}-3 x-2}{3 x-1}
$$

To add or subtract rational expressions with unlike denominators, first find the least common denominator (LCD). The LCD is the least common multiple of the polynomials in the denominators.

- Factor each polynomial completely to identify the LCD

Example: $\quad x^{2}-2 x-3$ and $x^{2}-x-6$

Example \#2:
Add the rational expressions and identify where the expression is undefined.

$$
\frac{x-3}{x^{2}+3 x-4}+\frac{2 x}{x+4}
$$

Example \#3:

$$
\text { Subtract } \frac{3 x-2}{2 x+5}-\frac{2}{5 x-2}
$$

You try: Also, identify any restriction.
Subtract $\frac{2 x^{2}+64}{x^{2}-64}-\frac{x-4}{x+8}$

Add: $\frac{x}{x+2}+\frac{4}{x-3}$

Example \#4: Complex Fractions

Simplify and assume that all variables are defined.

$$
\frac{1+\frac{1}{x+1}}{x+\frac{3 x}{x-1}}
$$

You try: Assume all variables are defined

$$
\frac{\frac{x}{x+1}-\frac{1}{x-1}}{\frac{1}{x+1}+2}
$$

$$
\frac{\frac{x^{2}-3 x-4}{x^{2}-4}}{\frac{2 x^{2}+2 x}{x+2}}
$$

