Graphing Radical Functions

What values of " x " are we allowed to plug into these expressions?

1. $\sqrt{3 x-6}$
2. $\sqrt[3]{-2 x-6}$
3. $\sqrt{11 x+5}$

Graph $y=\sqrt{x} . \quad$ Use a table of values.

Domain:

Range:

Now graph $y=\sqrt{x}+2$

- What is the domain? What is the range?

Graph $y=\sqrt{x-3}$

You try:
$\operatorname{Graph} y=\sqrt{x+1}+3$

Vertical Stretch/Compression:

$$
y=2 \sqrt{x}
$$

$$
y=\frac{1}{2} \sqrt{x}
$$

Horizontal Stretch/Compression:

- Stretches the graph either away or towards the y-axis

Graph and state transformations: $f(x)=\sqrt{2 x}$ and $g(x)=\sqrt{\frac{1}{3} x}$

You try: Describe the transformations:

$$
\begin{aligned}
& f(x)=\sqrt{4(x-1)}+5 \\
& g(x)=-\sqrt{x+1} \\
& h(x)=\sqrt{-x}
\end{aligned}
$$

Create a function that transforms $y=\sqrt{x}$ by:

1. Vertically compressing it by a factor of $1 / 2$ and translating it 2 left
2. Horizontally compressing it by a factor of $1 / 3$ and translating it 4 right
3. Reflecting it across the y-axis and translating up 3
4. Reflecting it across the y-axis and translating right 3
5. Reflecting it across the x-axis and translating up 3
