Exponential and Logarithmic Equations

$>$ Two methods for solving exponential equations:

1. Try writing them so that the bases are all the same.
2. Take the logarithm of both sides.

Example \#1: Solve using both methods. Check your answer. $3^{2 x}=27$

Example \#2: Solve by creating the same base. $4^{3 x-1}=8^{x+1}$

You try: Solve $9^{8-x}=27^{x-3}$

Example \#3:
$4^{x-1}=5$

You try: $3^{x+2}=7$

Exponential Function Word Problems

Example \#1:
An electric scooter purchased for $\mathbf{\$ 1 0 0 0}$ depreciates at an annual rate of 15%. What will the scooter be worth after 6 years?

Example \#2:

Caroline invests $\$ 5000$ in an account that pays 6.25% interest per year.
A) After 8 years of investing, will she have $\mathbf{\$ 1 0 , 0 0 0}$ saved? Explain.

B) How many years will it take for her to have $\mathbf{\$ 1 1 , 0 0 0}$ saved?

You try: The value of Kimberly's $\$ 3000$ computer decreases about 30% each year. Write a model to represent the value of her computer if Kimberly wants to sell it on Craig's List.
A) Use your model to predict the value after 4 years of owning it.
B) After how many years will her computer be worth $\$ 1500$?

Solving Logarithmic Equations

A logarithmic equation is an equation with a logarithmic expression that contains a variable.
$>$ If $\log _{b} x=\log _{b} y$, what can we say about x and y ?

Lesson 24-2

Example \#1:

$\log _{6}(2 x-1)=-1$

Example \#2:
$\log _{12} x+\log _{12}(x+1)=1$

You try: $\log _{4} \mathbf{1 0 0}+\log _{4}(x+1)=\mathbf{1}$

