The Natural Base "e"

The number *e* is a famous irrational number, and is one of the most important numbers in mathematics. The first few digits are **2.7182818284590452353602874713527**...

It is often called **Euler's number** after Leonhard Euler.

➤ e is the base of the natural logarithms

Natural Logarithm

• A logarithm with a base of *e*, but instead of writing log_e we write as ln.

Example #1: Convert between exponential and logarithmic form. $e^x = 11$ $\ln(x)=8$

Example #2: Solve each. $e^x = 7$

 $e^{4x} = 19$

Example #3: Solve each. lnx = 3

 $4\ln y = 12$

You try: Convert to logarithmic form. $e^x = 4$

Example #2: Simplify each of the following expressions.

e^{ln2}	3lnx
e^{5lnx}	$\ln(e^4)$
ln(<i>e</i>)	ln(x) + ln(3) - ln(t)

<u>Yoi</u>	<u>a try:</u> Simplify each.		
A)	e^{3lnx}	B)	4lnx + ln5

<u>Discuss</u>: Can log7 + ln6 be simplified any further? Explain.

Example #4: Solve ln5 + lnx = 1

Example #5: Solve $e^{3lnx} = 8$

<u>You try:</u> Solve 2lnx - 2 = 0

Continuously Compounded Interest

- Compounded interest is when interest (a fee) is added to a deposit or loan, so that, from that moment on, the interest that has been added also earns interest.
- *A* = *Pe^{rt}*, where *A* is the total amount, *P* is the principal, *r* is the annual interest rate, and *t* is the time in years.

Example #4:

What is the total amount for an investment of \$500 invested at 5.25% for 40 years and compounded continuously?

How long will it take for the investment to reach \$2500?

<u>You try:</u>

What is the total amount for an investment of \$100 invested at 3.5% for 8 years and compounded continuously?

Partner Practice:

- The grandparents of a newborn child decide to establish a college fund for their new granddaughter. They invest \$10,000 in a fund that pays 4.5% interest compounded continuously. Write a model for the value of the investment over time.
- 2) In 2013, the average annual public in-state tuition was \$8900, which was 2.3% above the 2012 average. If this trend continues, write a model that represents the amount of money needed to pay one year's tuition in years, *t*, after 2013.
- 3) In the year 2031, the granddaughter will be 18 and entering college. How many years will it take for the grandparents to save enough money for her first year of tuition?