Logarithms

A **logarithm** is the inverse operation that undoes raising a base to an exponent equation

Notice that the log is equal the exponent of the exponential form.

Example #1: **Rewrite as a logarithm**.

 $6^3 = 216$

$$4^6 = 4096$$

<u>You try:</u> $10^5 = 100000$

Example #2: Rewrite as an exponential. $log_7 x = 2$

$$log_{x}27 = 3$$

<u>You try:</u> $log_{10}x = 7$

Lesson 22-2 and 23-2 <u>Example #3:</u> Simplify each expression. log_464 log_264 log_381

A logarithm with base 10 is called a <u>common logarithm</u>. If no base is written for a logarithm, the base is assumed to be 10.

Example #3: log 100,000

Example #4: Solve log x = 3.

<u>You try:</u> Solve log x = -1.

> Does $log_0 5$ exist? Explain.

Does log(-3) exist?

➤ What is log1?

Property	Definition	Example
Product	$\log_b mn = \log_b m + \log_b n$	$\log_3 9x = \log_3 9 + \log_3 x$
Quotient	$\log_b \frac{m}{n} = \log_b m - \log_b n$	$\log_{\frac{1}{4}} \frac{4}{5} = \log_{\frac{1}{4}} 4 - \log_{\frac{1}{4}} 5$
Power	$\log_b m^p = p \cdot \log_b m$	$\log_2 8^x = x \cdot \log_2 8$

Properties of Logarithms

Example #1: Expand log (abc)

Example #2: **Expand** log (x^3)

Example #3: Expand $log\left(\frac{3x}{4m}\right)$

<u>You try:</u> **Expand** $\log(4xy)$

Expand $log\left(\frac{w}{2x}\right)$

Example #4: **Rewrite as a single logarithm.** log2 + log3 – log8

 $\frac{\text{Example #5:}}{3log x - \log(x)}$

You try: **Rewrite as a single logarithm:** 4logw + log5

Exponent Properties:

 $log_b b^x = x$ $log 10^x = x$ $b^{log_b x} = x$ $10^{log x} = x$

Example #6: Simplify log₃3⁴

Simplify: 3log₅5

<u>Example #7:</u> **Solve for x:** $\log_7(7^{3x}) = 9$

<u>You try:</u> **Simplify** $log_2 2^9$

Simplify: log3 + logx – log7

Lesson 22-2 and 23-2

Relating to Inverses:

Solve for the inverse of $f(x) = 2^x$

Solve for the inverse of $f(x) = 4 \cdot 2^x + 2$