Infinite Geometric Series

Practice:

For each Geometric series, find the partial sums for the first 3 terms, first 4 terms, and first 6 terms.

$$
S_{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots \quad R_{n}=\frac{1}{32}+\frac{1}{16}+\frac{1}{8}+\frac{1}{4}+\frac{1}{2}+\cdots
$$

When $|r|<1$, the partial sum approaches a fixed number and the series is said to converge.

When $|r| \geq 1$, the partial sum does not approach a fixed number and the series is said to diverge.

Example \#1:
Determine whether each geometric series converges or diverges.
A. $10+1+0.1+0.01+\ldots$
B. $4+12+36+108+\ldots$
C.

$$
\sum_{k=1}^{\infty} 25\left(\frac{1}{5}\right)^{k-1}
$$

If an infinite series converges, we can find the sum.

Sum of an Infinite Geometric Series

The sum of an infinite geometric series S with common ratio r and $|r|<1$ is

$$
S=\frac{a_{1}}{1-r}
$$

where a_{1} is the first term.

Example \#2:

Find the sum, if it exists: $1 \mathbf{- 0 . 2 + 0 . 0 4 - 0 . 0 0 8 + \ldots}$

You try: Find the sum, if it exists.
$\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k-1}$
$\sum_{k=1}^{\infty} \frac{3}{4}(7)^{k-1}$
$\sum_{k=1}^{\infty} 3\left(\frac{2}{5}\right)^{k-1}$

