Introduction to Series and Summation Notation

A series is the indicated sum of the terms of a sequence.

Sequence	$1,2,3,4$	$2,4,6,8, \ldots$	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$
Series	$1+2+3+4$	$2+4+6+8+\cdots$	$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}$

A partial sum, indicated by S_{n}, is the sum of a specified number of terms of a sequence.

Example \#1:
Find S_{5} for the even numbers sequence: $2,4,6,8, \ldots$

A series can also be represented by using summation notation, which uses the Greek letter Σ (capital sigma) to denote the sum of a sequence defined by a rule.

Write the series in summation notation:

1) $3+6+9+12$
2) $4+9+14+19+24+29$
3) $8+16+32+64+128$
4) $-1+2-4+8$

Example \#2: Expand the series and evaluate.

$$
\sum_{k=1}^{6}\left(k^{2}-10\right)
$$

Example \#3: Expand and evaluate.

$$
\sum_{k=1}^{5}-5(2)^{k-1}
$$

You try:

$$
\sum_{k=1}^{7} 3
$$

In a constant series, each term has the same value.

Arithmetic and Geometric Series

Arithmetic Series

- The sum of an arithmetic sequence.

$$
S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)
$$

- n is the number of terms, a_{1} is the $1^{\text {st }}$ term, and a_{n} is the last term.

Example \#1:
Find the sum of $2+4+6+8+10$

Example \#2:
The side section of an auditorium has 12 seats in the first row and 3 additional seats in each subsequent row. How many seats are in the 10th row? How many seats in total are in the first 10 rows?

Example \#3:

$$
\sum_{k=1}^{15}(5+2 k)
$$

Geometric Series - The sum of a geometric sequence.

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right), r \neq 1
$$

- n is the number of terms, a_{1} is the $1^{\text {st }}$ term, and r is the common ratio.

Example\#4:
Find S_{8} for $1+2+4+8+16+\ldots$

Example \#5:

$$
\sum_{k=1}^{6}\left(\frac{1}{2}\right)^{k-1}
$$

You try: Find \mathbf{S}_{5} for the sequence: $32,8,2, .5, \ldots$

Example \#6: A 6-year lease states that the annual rent for an office space is $\mathbf{\$ 8 4 , 0 0 0}$ the first year and will increase by 8% each additional year of the lease. What will the total rent expense be over the 6-year lease?

