Introduction to Series and Summation Notation A **series** is the indicated sum of the terms of a sequence.

Sequence	1, 2, 3, 4	2, 4, 6, 8,	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$
Series	1 + 2 + 3 + 4	2 + 4 + 6 + 8 + …	$\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$

A **partial sum**, indicated by *S_n*, is the sum of a specified number of terms of a sequence.

Example #1: Find S₅ for the even numbers sequence: 2, 4, 6, 8, ...

A series can also be represented by using <u>summation</u> <u>notation</u>, which uses the Greek letter Σ (capital *sigma*) to denote the sum of a sequence defined by a rule.

Write the series in summation notation:

1) 3 +6 +9 +12

2) 4 + 9 + 14 + 19 + 24 + 29

$$(4) -1 + 2 - 4 + 8$$

Example #2: **Expand the series and evaluate.**

$$\sum_{k=1}^{6} \left(k^2 - 10 \right)$$

Example #3: **Expand and evaluate.**

$$\sum_{k=1}^{5} -5(2)^{k-1}$$

$$\frac{\text{You try:}}{\sum_{k=1}^{7} 3}$$

In a *constant series,* each term has the same value.

Arithmetic and Geometric Series Arithmetic Series

• The sum of an arithmetic sequence.

$$S_n = n \left(\frac{a_1 + a_n}{2} \right)$$

• n is the number of terms, a_1 is the 1st term, and a_n is the last term.

Example #1: Find the sum of 2 + 4 + 6 + 8 + 10

Example #2:

The side section of an auditorium has 12 seats in the first row and 3 additional seats in each subsequent row. How many seats are in the 10th row? How many seats in total are in the first 10 rows?

$$\frac{\text{Example #3:}}{\sum_{k=1}^{15} (5+2k)}$$

Geometric Series – The sum of a geometric sequence.

$$S_{\mathbf{n}} = a_1 \left(\frac{1 - \mathbf{r}^{\mathbf{n}}}{1 - \mathbf{r}} \right), \ \mathbf{r} \neq 1$$

n is the number of terms, *a*¹ is the 1st term, and *r* is the common ratio.

Example#4: Find *S*⁸ for **1** + **2** + **4** + **8** + **16** + ...

$$\frac{\text{Example #5:}}{\sum_{k=1}^{6} \left(\frac{1}{2}\right)^{k-1}}$$

You try: Find S₅ for the sequence: 32, 8, 2, .5, ...

Example #6: A 6-year lease states that the annual rent for an office space is \$84,000 the first year and will increase by 8% each additional year of the lease. What will the total rent expense be over the 6-year lease?