Arithmetic and Geometric Sequences

A sequence is a set of numbers in a particular order or pattern.

- Example: Fibonacci Sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

A Term is each number in a sequence.

- The first term is denoted by a_{1} (Read as: a subscript 1)
- The second term is denoted by a_{2}, third term is denoted by a_{3}, and so on.
- All term subscripts are made of natural numbers

You try: What is a_{5} of the Fibonacci Sequence?
A Finite Sequence contains a limited number of terms.

- Example: $\{-2,0,2,4,6\}$

An Infinite Sequence continues without end.

- Example: Fibonacci Sequence

Example \#1:
$\{2,4,8,16,32\}$

Example \#2:
$2,4,8,16,32, \ldots$

Arithmetic Sequence

- Each term is determined by adding a constant value to the previous term.
- The added constant value is called the common difference.
- Example: $\{3,6,9,12,15\}$

Geometric Sequence

- Each term is determined by multiplying a nonzero constant by the previous term.
- The multiplied nonzero constant is called the common ratio.

Determine whether each sequence is arithmetic or geometric.

(1) $2,6,18,54, \ldots$
(2) $5,-6,-17,-28, \ldots$
(3) $-4,12,28,44, \ldots$

Types of Formulas for Sequences

Explicit Formula

- Defines the nth term of a sequence as a function of n.

Arithmetic Sequence - Linear

- Formula: $\boldsymbol{a}_{\mathrm{n}}=\boldsymbol{a}_{\mathbf{1}}+(\mathrm{n}-1) \boldsymbol{d}$

Geometric Sequence - Exponential

- Formula: $a_{\mathrm{n}}=a_{1}\left(r^{\mathrm{n}-1}\right)$

Example \#3: Write the explicit formula for each of the 3 previous sequences.
(1) $2,6,18,54, \ldots$
(2) $5,-6,-17,-28, \ldots$
(3) $-4,12,28,44, \ldots$

Recursive Formula

- A rule in which one or more previous terms are used to generate the next term.
- Example: Fibonacci Sequence

Example \#4: Find the first 5 terms in the sequence. $a_{\mathrm{n}}=2 a_{\mathrm{n}-1}+a_{\mathrm{n}-2}$ where $a_{1}=2$ and $a_{2}=4$

You try: Find the first 4 terms of the sequence: $a_{\mathrm{n}}=-a_{\mathrm{n}-1}+5$ where $a_{1}=3$

Example \#5: Find the indicated terms in this arithmetic sequence: 11,_, , , -17

Example \#6: Find the 10th term of the geometric sequence that has $a_{5}=96$ and $a_{7}=384$.

You try: Geometric Sequence: 4, __, 36, ...
Arithmetic Sequence: $\frac{1}{2}, \ldots, \ldots, 2$

