Arithmetic and Geometric Sequences

A **sequence** is a set of numbers in a particular order or pattern.

• Example: Fibonacci Sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

A **Term** is each number in a sequence.

- The first term is denoted by *a*¹ (Read as: *a* subscript 1)
- The second term is denoted by *a*₂, third term is denoted by *a*₃, and so on.
- All term subscripts are made of natural numbers

You try: What is a₅ of the Fibonacci Sequence?

A **Finite Sequence** contains a limited number of terms.

• Example: {-2, 0, 2, 4, 6}

An **Infinite Sequence** continues without end.

• Example: Fibonacci Sequence

<u>Example #1:</u>	Example #2:
{2, 4, 8, 16, 32}	2, 4, 8, 16, 32,

Arithmetic Sequence

- Each term is determined by adding a constant value to the previous term.
- The added constant value is called the <u>common difference</u>.
 - Example: {3, 6, 9, 12, 15}

Geometric Sequence

- Each term is determined by multiplying a nonzero constant by the previous term.
- The multiplied nonzero constant is called the common ratio.

Lesson 19-1 and 20-1

Determine whether each sequence is arithmetic or geometric.

(1) 2, 6, 18, 54, ...

- (2) 5, -6, -17, -28, ...
- (3) -4, 12, 28, 44, ...

Types of Formulas for Sequences

Explicit Formula

• Defines the *n*th term of a sequence as a function of *n*.

Arithmetic Sequence – Linear

• Formula: $a_n = a_1 + (n - 1)d$

Geometric Sequence – Exponential

• Formula: $a_n = a_1 (r^{n-1})$

Example #3: Write the explicit formula for each of the 3 previous sequences.

(1) 2, 6, 18, 54, ...

(2) 5, -6, -17, -28, ...

(3) -4, 12, 28, 44, ...

Lesson 19-1 and 20-1

Recursive Formula

- A rule in which one or more previous terms are used to generate the next term.
 - Example: Fibonacci Sequence

Example #4: Find the first 5 terms in the sequence.

 $a_n = 2a_{n-1} + a_{n-2}$ where $a_1 = 2$ and $a_2 = 4$

You try: Find the first 4 terms of the sequence: $a_n = -a_{n-1} + 5$ where $a_1 = 3$

Example #5: Find the indicated terms in this arithmetic sequence: 11, _, _, _, -17

Lesson 19-1 and 20-1

Example #6: Find the 10th term of the geometric sequence that has $a_5 = 96$ and $a_7 = 384$.

<u>You try:</u> **Geometric Sequence:** 4, ____, 36, ...

Arithmetic Sequence: $\frac{1}{2}$, ____, ___, 2