Double Angle Identities

Instead of the angle being just " θ ", the angle will be " 2θ "

Recall from the Pythagorean Identities that $cos^2\theta + sin^2\theta = 1$, which means that $cos^2\theta = 1 - sin^2\theta$ and $sin^2\theta = 1 - cos^2\theta$. This is why $cos2\theta$ has so many variations.

NOTE: It is very important to remember that $cos2\theta \neq 2cos\theta$. The interior coefficient cannot be pulled to the front! In terms of transformations, this should make sense since $2cos\theta$ indicates that the amplitude has changed to be 2, where $cos2\theta$ indicates a period/frequency change.

Example #1:	
Prove: $\sin 2\theta = 2\tan\theta - 2\tan\theta\sin^2\theta$	
$2\tan\theta - 2\tan\theta\sin^2\theta = 2\tan\theta(1-\sin^2\theta)$	1. I factored out a common term.
= 2. Rind CUSZO	2 I made a substitution using a
Caso	Pythagorean Identity.
$= 2 \sin \theta \cos \theta$	3. When the remaining
= sin 20	matches the desired result!

Since $cos2\theta$ has so many variations, it will be important in proofs to be strategic about which form we select. Since all 3 forms are equivalent, they will all eventually lead you to a complete proof, but there is always a fastest option. I will discuss this in the example proof below.

Section 14.5

You try:
$$sin2x = 2cot(x)sin^2(x)$$

Sample Proof:

 $2\cot(x)\sin^2(x)=2\frac{\cos x}{\sin x}\cdot \sin^2 x = 2\cos x\sin x = \sin 2x$