Double Angle Identities

Instead of the angle being just " θ ", the angle will be " 2θ "

Double Angle:
 $$
\begin{aligned} & \text { Double Angle: } \\ & \sin 2 \theta=\sin (\theta+\theta)=\sin \theta \cos \theta+\cos \theta \sin \theta \end{aligned}
$$
 $$
=2 \sin \theta \cos \theta
$$

We can use the Sum/Difference Identities to derive the Double Angle Identities.

$$
\cos 2 \theta=\cos (\theta+\theta)=\cos \theta \cos \theta-\sin \theta \sin \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

$$
1-\sin ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta
$$

$$
\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=2 \cos ^{2} \theta-1
$$

Double-Angle Identities		
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$		
	$\cos 2 \theta=2 \cos ^{2} \theta-1$	$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
	$\cos 2 \theta=1-2 \sin ^{2} \theta$	

Recall from the Pythagorean Identities that $\cos ^{2} \theta+\sin ^{2} \theta=1$, which means that $\cos ^{2} \theta=1-\sin ^{2} \theta$ and $\sin ^{2} \theta=1-\cos ^{2} \theta$. This is why $\cos 2 \theta$ has so many variations.

NOTE: It is very important to remember that $\cos 2 \theta \neq 2 \cos \theta$. The interior coefficient cannot be pulled to the front! In terms of transformations, this should make sense since $2 \cos \theta$ indicates that the amplitude has changed to be 2 , where $\cos 2 \theta$ indicates a period/frequency change.

Example \#1:

Prove: $\sin 2 \theta=2 \tan \theta-2 \tan \theta \sin ^{2} \theta$

$$
2 \tan \theta-2 \tan \theta \sin ^{2} \theta=2 \tan \theta\left(1-\sin ^{2} \theta\right)
$$

1. I factored out a common term.

$$
=2 \sin \theta \cos \theta
$$

$$
=\sin 2 \theta
$$

2. I made a substitution using a Pythagorean Identity.
3. When the remaining expression is simplified, it matches the desired result!

Since $\cos 2 \theta$ has so many variations, it will be important in proofs to be strategic about which form we select. Since all 3 forms are equivalent, they will all eventually lead you to a complete proof, but there is always a fastest option. I will discuss this in the example proof below.

$$
\begin{aligned}
& \text { Example \#2: } \\
& \begin{aligned}
\cos 2 \theta=\left(2-\sec ^{2} \theta\right)\left(1-\sin ^{2} \theta\right) & \begin{array}{l}
\text { 1. I made a substitution using } \\
\cos ^{2} \theta=1-\sin ^{2} \theta
\end{array} \\
\left(2-\sec ^{2} \theta\right)\left(1-\sin ^{2} \theta\right) & =\cos ^{2} \theta\left(2-\sec ^{2} \theta\right) \begin{array}{l}
\text { 2. I distributed. } \\
\end{array} \\
& =2 \cos ^{2} \theta-\cos ^{2} \theta \sec c^{2} \theta-\cos ^{2} \theta \sec ^{2} \theta=\cos ^{2} \theta \cdot \frac{1}{\cos ^{2} \theta}=1
\end{aligned} \\
& \\
& \\
&
\end{aligned}
$$

Section 14.5

You try: $\quad \sin 2 x=2 \cot (x) \sin ^{2}(x)$

Sample Proof:

$$
2 \cot (\mathrm{x}) \sin ^{2}(\mathrm{x})=2 \frac{\cos x}{\sin x} \cdot \sin ^{2} x=2 \cos x \sin x=\sin 2 x
$$

