Sum/Difference Angle Identities

It will be helpful to have a filled in Unit Circle to refer to as you work through this lesson!

Sum Identities

$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$

Difference Identities

Notice how the signs between the terms differ depending on if you are using the sum or difference version of the identity.
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$

Example \#1:

Find the exact value of $\cos 15^{\circ}$.
$\cos \left(45^{\circ}-30^{\circ}\right)=\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}$

$$
\begin{aligned}
& =\frac{\sqrt{2}}{2}\left(\frac{\sqrt{3}}{2}\right)+\frac{\sqrt{2}}{2}\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

Example \#2:
Find the exact value of $\tan \left(\frac{11 \pi}{12}\right)$.

$$
\begin{aligned}
& \tan \left(\frac{\pi}{4}+\frac{2 \pi}{3}\right)=\frac{\tan \frac{\pi}{4}+\tan \frac{2 \pi}{3}}{1-\tan \frac{\pi}{4} \tan \frac{2 \pi}{3}}=\frac{1+-\sqrt{3}}{1-(-\sqrt{3})} \\
&=1-\sqrt{3} \\
& 1+\sqrt{3}
\end{aligned}
$$

Once we obtain radian values that sum to $\frac{11 \pi}{12}$, we apply the Sum Identity for tangent, plug in the Unit Circle values, and then simplify.

You try: Find the exact value of $\sin \left(\frac{7 \pi}{12}\right)$.
$\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right) \leftarrow$ option of angles to add together

Example \#3:

Prove the identity: $\cos \left(x+\frac{\pi}{2}\right)=-\sin x$.
$\cos \left(x+\frac{\pi}{2}\right)=\cos x \cos \frac{\pi}{2}-\sin x \sin \frac{\pi}{2}$
$=\cos x \cdot(0)-\sin x(1)$
$=-\sin x$
In these two "proofs", we start by expanding the sum or difference using the appropriate identity. Then we substitute Unit Circle Values for the radians. The simplified expression should match the desired result.
Example \#4:

Prove the identity $\tan \left(\theta+\frac{\pi}{4}\right)=\frac{1+\tan \theta}{1-\tan \theta}$.

$$
\tan \left(\theta+\frac{\pi}{4}\right)=\frac{\tan \theta+\tan \frac{\pi}{4}}{1-\tan \theta \tan \frac{\pi}{4}}=\frac{\tan \theta+1}{1-\tan \theta}
$$

You try: Prove: $\quad-\cos x=\cos (x+\pi)$

Sample Answer:

$$
\begin{aligned}
\cos (x+\pi)= & \cos x \cos \pi-\sin x \sin \pi \\
& =\cos x \cdot(-1)-\sin x \cdot(0) \\
& =-\cos x
\end{aligned}
$$

