

**All identities need to be memorized!

This lesson derives the Pythagorean Identities, but only the boxed identities are what need to be memorized for future use. The 3 Pythagorean Identities may also be rearranged to find an equivalent form. For instance, if $cos^2\theta + sin^2\theta = 1$, then $cos^2\theta = 1 - sin^2\theta$ and $sin^2\theta = 1 - cos^2\theta$.

Negative Angle Identities: $sin(-\theta) = -sin \theta$ $cos(-\theta) = cos \theta$ $tan(-\theta) = -tan \theta$ We will be doing proofs using these new identities. When constructing a proof, we need to show that one side is equivalent to the other side. We do not use the two-column proof structure from geometry. Instead, we just show how to manipulate one side in order for it to become the other side. I recommend starting with the side that seems more complicated. The following examples demonstrate one example proof, but there are other correct intermediate steps that could have happened.

Section 14.3
Example #1: Prove the trig identity.

$$tan \theta = \frac{sec\theta}{csc\theta}$$

$$\frac{\int \theta c \theta}{csc\theta} = \int \theta c \theta \cdot \frac{1}{csc\theta} = \frac{1}{cos\theta} \cdot \int \sin \theta = +an\theta$$
Example #2: Prove the trig identity.
sin θ cot $\theta = \cos \theta$
 $\int \ln \theta cot \theta = \sin \theta \cdot \frac{cw \theta}{cin \theta} = cw \theta$
You try: $cos^2 \theta (sec^2 \theta - 1) = sin^2 \theta$

Sample answer:

$$\cos^{2}\theta(\sec^{2}\theta - 1) = \cos^{2}\theta(\tan^{2}\theta) = \cos^{2}\theta\left(\frac{\sin^{2}\theta}{\cos^{2}\theta}\right) = \sin^{2}\theta$$

Notice how in this proof, I used a rearranged version of a Pythagorean Identity. If $1 + tan^2\theta = sec^2\theta$, then $sec^2\theta - 1 = tan^2\theta$

Example #3: Rewrite in terms of cosine and then simplify.
sec
$$\theta(1 - \sin^2 \theta) = \frac{1}{\cos \theta} \cdot \cos^2 \theta = \cos \theta$$

 $\cos \theta$
Example #4: Rewrite in terms of cosine and then simplify.
 $2(\csc^2 \theta - \cot^2 \theta) = 2 \cdot 1$
 $\sec \theta = 2 \cdot 1$
 $\sec \theta = 2 \cdot 1$
 $\sec \theta = 2 \cdot 0$

<u>You try:</u> Simplify: cscθcosθtanθ

Sample answer:

$$csc\theta cos\theta tan\theta = \frac{1}{sin\theta} \cdot cos\theta \cdot \frac{sin\theta}{cos\theta} = 1$$