Fundamental Trigonometric Identities

Reciprocal Identities:

$$
\begin{array}{ll}
\csc \theta=\frac{1}{\sin \theta} & \frac{1}{\csc \theta}=\sin \theta \\
\sec \theta=\frac{1}{\cos \theta} & \frac{1}{\operatorname{cec} \theta}=\cos \theta \\
\cot \theta=\frac{1}{\tan \theta} & \frac{1}{\cot \theta}=\tan \theta
\end{array}
$$

Tangent and Cotangent ratios:

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Pythagorean Identities:

$(\cos \theta)^{2}+(\sin \theta)^{2}=1$

$$
\begin{aligned}
& \frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta
\end{aligned}
$$

This lesson derives the Pythagorean Identities, but only the boxed identities are what need to be memorized for future use.
The 3 Pythagorean Identities may also be rearranged to find an equivalent form.
For instance, if $\cos ^{2} \theta+\sin ^{2} \theta=1$, then $\cos ^{2} \theta=1-\sin ^{2} \theta$ and $\sin ^{2} \theta=1-\cos ^{2} \theta$.
Negative Angle Identities:

$$
\sin (-\theta)=-\sin \theta
$$

$$
\cos (-\theta)=\cos \theta
$$

$$
\tan (-\theta)=-\tan \theta
$$

Note: Instead of writing $(\cos \theta)^{2}$, we write $\cos ^{2} \theta$. Trig exponents are moved to be between the name of the ratio and the angle to minimize the use of parentheses.

Recall that $x=\cos \theta$ and $y=\sin \theta$ from the Unit Circle lesson.

We will be doing proofs using these new identities. When constructing a proof, we need to show that one side is equivalent to the other side. We do not use the two-column proof structure from geometry.
Instead, we just show how to manipulate one side in order for it to become the other side. I recommend starting with the side that seems more complicated. The following examples demonstrate one example proof, but there are other correct intermediate steps that could have happened.

Section 14.3
Example \#1: Prove the trig identity.
$\boldsymbol{\operatorname { t a n }} \theta=\frac{\sec \theta}{\csc \theta}$
$\frac{\sec \theta}{\csc \theta}=\sec \theta \cdot \frac{1}{\csc \theta}=\frac{1}{\cos \theta} \cdot \sin \theta=\tan \theta$
Example \#2: Prove the trig identity. $\boldsymbol{\operatorname { s i n }} \theta \boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}=\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$
$\sin \theta \cot \theta=\sin \theta \cdot \frac{\cos \theta}{\sin \theta}=\cos \theta$
You try: $\quad \cos ^{2} \theta\left(\sec ^{2} \theta-1\right)=\sin ^{2} \theta$
Sample answer:

$$
\cos ^{2} \theta\left(\sec ^{2} \theta-1\right)=\cos ^{2} \theta\left(\tan ^{2} \theta\right)=\cos ^{2} \theta\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)=\sin ^{2} \theta
$$

Notice how in this proof, I used a rearranged version of a Pythagorean Identity.
If $1+\tan ^{2} \theta=\sec ^{2} \theta$, then $\sec ^{2} \theta-1=\tan ^{2} \theta$
Example \#3: Rewrite in terms of cosine and then simplify.
$\sec \theta\left(1-\sin ^{2} \theta\right)=\frac{1}{\cos \theta} \cdot \cos ^{2} \theta=\cos \theta$

Example \#4: Rewrite in terms of cosine and then simplify.

$$
\frac{2\left(\csc ^{2} \theta-\cot ^{2} \theta\right)}{\sec \theta}=\frac{2 \cdot 1}{\sec \theta}=2 \cos \theta
$$

You try: Simplify: $\csc \theta \cos \theta \tan \theta$

Sample answer:

$$
\csc \theta \cos \theta \tan \theta=\frac{1}{\sin \theta} \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta}=1
$$

