Fundamental Trigonometric Identities

Reciprocal Identities:

$$
\begin{aligned}
& \csc \theta= \\
& \sec \theta= \\
& \cot \theta=
\end{aligned}
$$

Tangent and Cotangent ratios:

$$
\tan \theta=\quad \cot \theta=
$$

Pythagorean Identities:

Negative Angle Identities:

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \cos (-\theta)=\cos \theta \\
& \tan (-\theta)=-\tan \theta
\end{aligned}
$$

Section 14.3
Example \#1: Prove the trig identity.
$\boldsymbol{\operatorname { t a n }} \theta=\frac{\boldsymbol{\operatorname { s e c }} \theta}{\boldsymbol{\operatorname { c s c }} \theta}$

Example \#2: Prove the trig identity. $\sin \theta \cot \theta=\cos \theta$

You try: $\quad \cos ^{2} \theta\left(\sec ^{2} \theta-1\right)=\sin ^{2} \theta$

Example \#3: Rewrite in terms of cosine and then simplify. $\boldsymbol{\operatorname { s e c }} \theta\left(1-\sin ^{2} \theta\right)$

Example \#4: Rewrite in terms of cosine and then simplify. $2\left(\csc ^{2} \theta-\cot ^{2} \theta\right)$ $\sec \theta$

You try: Simplify: $\csc \theta \cos \theta \tan \theta$

