Transformations of Sine and Cosine

The equations for a wave function use our trig ratios.
Here is a link to a video showing the relationship between the wave and the unit circle: https://www.youtube.com/watch?v=Q55T6LeTvsA
To graph the function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$, we imagine plugging in each angle value on the unit circle and then finding the sine of that value.
For instance, $f(0)=\sin (0)=0$ and $f\left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$.
We could also consider any coterminal angles, allowing us to extend the graph to negative angle values as well as angle values larger than 2π.
Parent Function: $f(x)=\sin x$

To graph the function $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$, we imagine plugging in each angle value on the unit circle and then finding the sine of that value.
For instance, $g(0)=\cos (0)=1$ and $f\left(\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
We could also consider any coterminal angles, allowing us to extend the graph to negative angle values as well as angle values larger than 2π.
Parent Function: $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$

Similarities between sine and cosine graphs:
Max Value:
Midline:
Min Value:
Period:
Amplitude:

Differences between sine and cosine graphs:

When we graph transformations of sine and cosine, we will be transforming the 5 main points on the graph that correspond to a max, min, or midline value. In the parent function, each of these key values are $\frac{\pi}{2}$ units apart. We will graph at least one period of each function. The examples will all be graphed in terms of radians.

Transformations - Amplitude change

${ }^{* *}$ The amplitude is the number multiplied in front of the trig function.
$\operatorname{Graph} y=2 \cos (\theta)$.

Graph $y=5 \sin (\theta)$.

Graph $y=-2 \cos (\theta)$.

Remember that amplitude is a distance, so it must be a positive value! A negative in front of our function indicates a reflection across the x-axis, not a change in amplitude.

Vertical Shifts:

Example \#1: Graph $\boldsymbol{y}=\sin x+3$

Example \#2: $\operatorname{Graph} \boldsymbol{y}=\mathbf{2} \boldsymbol{\operatorname { c o s } \boldsymbol { x } \boldsymbol { x } - \mathbf { 3 }}$

You try: Graph $k(x)=3 \cos x+2$

A phase shift is a horizontal shift of a wave function.
Example \#3:
Using $f(x)=\sin x$ as a guide, graph $g(x)=\sin \left(x-\frac{\pi}{4}\right)$.

Graph $g(x)=\cos \left(x-\frac{\pi}{4}\right)$.

You try: $\operatorname{Graph} y=\boldsymbol{\operatorname { s i n }}(x-\pi)$.

How can we write cosine as a phase shift of sine?

The last type of transformation is a period/frequency change.
Graph $y=\cos 2 x$.

General form of transformations:

Graph $y=2 \sin (\pi x)-1$

Graph $y=2 \sin 2\left(x-\frac{\pi}{2}\right)-1$

Graph $y=\cos (3 x-\pi)+3$

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

You try: Graph $y=\cos \left(2 x-\frac{\pi}{2}\right)-2$

