Wave Functions
 Main points on our wave:
 Maximum - The highest point of the function.
 Minimum - The lowest point of the function.
 Midline - The horizontal axis that is used as the reference line about which the function oscillates (continually goes around). \&equation
 $>$ Amplitude - The distance from the midline to the maximum or minimum. \not Always positive

You try:

Label a, b, c, and d as the maximum, minimur

- Which figure has a larger amplitude? Why?

A - maximum
B-minimum
C - point on midline
D - maximum

> A - point on midline
> B - maximum
> C - minimum
> D - None

The second one has the larger amplitude since the distance from the max to the midline is larger.

Also, the bird is yelling ©

Example \#1: Find the max, min, midline, and amplitude.

You try: Find the max, min, midline, and amplitude.

Max: 1.5
Min: -. 5
Midline: $\mathrm{y}=.5$
Amplitude: 1

The period of a wave function is the length of one cycle.
The frequency is the number of cycles in a given unit of time.
To relate period and frequency, we use " $\mathrm{pb}=2 \pi$ "
"Peanut Butter Equals 2π "
${ }^{* *} b$ is the commonly used letter for frequency. ** p is the commonly used letter for period.

To visually identify the period, there are 4 options:

1. Calculate the distance between two maxima
2. Calculate the distance between two minima
3. Calculate the distance between a max and a min and then double it
4. Calculate the distance between 3 midline values

Wave Functions are also referred to as "periodic" functions because the pattern repeats after a certain amount of time.

Example \#2: Find the period and frequency of the graph

$\langle\overbrace{-\pi}^{-\pi} \overbrace{-}^{\pi}$

$$
\begin{gathered}
p b=2 \pi \\
\pi b=2 \pi \\
b=2
\end{gathered}
$$

Example \#3:

Find the period, frequency, max, min, and amplitude.

Period: $\frac{2 \pi}{3}$ (distance between two maxima)
Frequency: 3
Max: 10
Min: -10
Midline: $\mathrm{y}=0$
Amplitude: 10

