Inverse Trig

Used to "free" a variable from inside of a trig function. Example: $cos(x) = \frac{1}{2}$

Function Inverse Relation	
$\sin \theta = a$	$\sin^{-1}a= heta$
$\cos \theta = a$	$\cos^{-1}a = \theta$
$\tan \theta = a$	$\tan^{-1}a= heta$

Example #1: Find all possible values of $sin^{-1}\left(\frac{1}{2}\right)$

Example #2: Find all possible values of tan⁻¹1.

Sign characteristics of the unit circle:

A. In which quadrant are all the ratios positive?

- B. Which quadrant has only sine positive?
- C. Which quadrant has only cosine positive?
- D. What quadrant has only tangent positive?

Remember: "All Students Take Calculus"

<u>You try:</u> Find $sin^{-1}\left(\frac{-\sqrt{3}}{2}\right)$

Example #3: Solve for θ given that sin $\theta = 0.4$, for $-90^\circ \le \theta \le 90^\circ$.

Example #4: Solve for θ given that tan $\theta = -2$, for $-90^{\circ} < \theta < 90^{\circ}$.

Because more than one value of θ produces the same output value for a given trigonometric function, it is necessary to restrict the domain of each trigonometric function in order to define the inverse trigonometric functions.

- > Trigonometric functions with restricted domains are indicated with a capital letter.
- > The domains of the Sine, Cosine, and Tangent functions are restricted as follows:

Sinθ = sinθ for {θ|
$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
}
θ is restricted to Quadrants I and IV.

$$Cos\theta = cos\theta \text{ for } \{\theta 0 \le \theta \le \pi \}$$

$$\theta \text{ is restricted to Quadrants I and I}$$

		$\left(\begin{array}{c} \\ \end{array} \right)$
	θ is restricted to Quadrants I and II.	\cup
Tanθ =	$\tan\theta$ for $\{\theta \mid -\frac{\pi}{2} < \theta < \frac{\pi}{2}\}$	θ
	<i>θ</i> is restricted to Quadrants I and IV.	$\mathbf{\nabla}$

Example #5: Evaluate each inverse trigonometric function. Give your answer in radians.

$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\operatorname{Sin}^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

$$Tan^{-1}(-\sqrt{3})$$

$$\operatorname{Sin}^{-1}\frac{3}{2}$$

Write about it: Explain the difference between tan⁻¹a and Tan⁻¹a.