Inverse Trig

Used to "free" a variable from inside of a trig function.
Example: $\cos (\mathrm{x})=1 / 2$

Function	Inverse Relation
$\sin \theta=a$	$\sin ^{-1} a=\theta$
$\cos \theta=a$	$\cos ^{-1} a=\theta$
$\tan \theta=a$	$\tan ^{-1} a=\theta$

Example \#1: Find all possible values of $\boldsymbol{\operatorname { s i n }}^{\boldsymbol{- 1}}\left(\frac{1}{2}\right)$

Example \#2: Find all possible values of $\tan ^{-1} 1$.

Sign characteristics of the unit circle:

A. In which quadrant are all the ratios positive?
B. Which quadrant has only sine positive?
C. Which quadrant has only cosine positive?
D. What quadrant has only tangent positive?

Remember: "All Students Take Calculus"
You try: Find $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$

Example \#3: Solve for $\boldsymbol{\theta}$ given that $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}=\mathbf{0 . 4}$, for $-\mathbf{9 0} \leq \boldsymbol{\theta} \leq \mathbf{9 0}$.

Example \#4: Solve for $\boldsymbol{\theta}$ given that $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}=\mathbf{- 2}$, for $\mathbf{- 9 0}<\boldsymbol{\theta}<\mathbf{9 0}^{\circ}$.

Because more than one value of θ produces the same output value for a given trigonometric function, it is necessary to restrict the domain of each trigonometric function in order to define the inverse trigonometric functions.
$>$ Trigonometric functions with restricted domains are indicated with a capital letter.
> The domains of the Sine, Cosine, and Tangent functions are restricted as follows:

$$
\begin{aligned}
\operatorname{Sin} \theta= & \sin \theta \text { for }\left\{\theta \left\lvert\,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right.\right\} \\
& \theta \text { is restricted to Quadrants I and IV. } \\
\operatorname{Cos} \theta= & \cos \theta \text { for }\{\theta 0 \leq \theta \leq \pi\} \\
& \theta \text { is restricted to Quadrants I and II. } \\
\operatorname{Tan} \theta= & \tan \theta \text { for }\left\{\theta \left\lvert\,-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right.\right. \\
& \theta \text { is restricted to Quadrants I and IV. }
\end{aligned}
$$

Example \#5: Evaluate each inverse trigonometric function. Give your answer in radians.
$\operatorname{Cos}^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
$\operatorname{Sin}^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

$$
\operatorname{Tan}^{-1}(-\sqrt{3})
$$

$\operatorname{Sin}^{-1} \frac{3}{2}$

Write about it:

Explain the difference between $\tan ^{-1} a$ and $\operatorname{Tan}^{-1} a$.

