What are some things we already know about right triangles?

Trigonometric Functions

WORDS	NUMBERS	SYMBOLS
The sine (\sin) of angle θ is the ratio of the length of the opposite leg to the length of the hypotenuse.	$\sin \theta=\frac{4}{5}$$\cos \theta=\frac{3}{5}$	$\sin \theta=\frac{\text { opp. }}{\text { hyp. }}$
The cosine (cos) of angle θ is the ratio of the length of the adjacent leg to the length of the hypotenuse.		$\cos \theta=\frac{\text { adj }}{\text { hyp. }}$
The tangent (tan) of angle θ is the ratio of the length of the opposite leg to the length of the adjacent leg.		$\tan \theta=\frac{\text { opp. }}{\text { adj. }}$

Example \#1:
Find the value of the sine, cosine, and tangent functions for $\boldsymbol{\theta}$.

Example \#2:

A skateboard ramp will have a height of 12 in., and the angle between the ramp and the ground will be 17°. To the nearest inch, what will be the length l of the ramp?

You try: A school is constructing a wheelchair ramp from the ground to a deck with a height of 18in. The angle between the ground and the ramp must be 4.8°. To the nearest inch, what should be the distance d between the end of the ramp and the deck?

Special Right Triangle Trig Ratios:

45-45-90

30-60-90

Example \#3: Use a trig function to find the value of \boldsymbol{x} without a

 calculator.

You try: Now find the other side length of the triangle.

Reciprocal Trigonometric Functions

WORDS	NUMBERS	SYMBOLS
The $\operatorname{cosecant~(csc)~of~angle~} \theta$ is the reciprocal of the sine function.	$\csc \theta=\frac{5}{4}$	$\csc \theta=\frac{1}{\sin \theta}=\frac{\text { hyp. }}{\text { opp. }}$
The secant (sec) of angle θ is the reciprocal of the cosine function.	$\sec \theta=\frac{5}{3}$	\cos
The cotangent (cot) of angle θ is the reciprocal of the tangent function.	$\cot \theta=\frac{3}{4}$	$\sec \theta=\frac{1}{\cos \theta}=\frac{\text { hyp. }}{\text { adj. }}$

Example \#4: Find the values of the six trigonometric functions for $\boldsymbol{\theta}$.

70

You try:

1. A boy flying a kite lets out 300 feet of string that makes an angle of 38° with the ground. Assuming that the string is straight, how high above the ground is the kite?
2. A decorative pin is in the shape of an equilateral triangle. The length of each side is 6 centimeters. Josh will attach the fastener to the back along the height of the pin. Will the fastener fit if it is 4 centimeters long?
3. A straight road to the top of a hill is 2500 feet long and makes an angle of 12° with the horizontal. Find the height of the hill.
4. A manufacturer wants to make an equilateral case with a height of 30 centimeters. What is the length of each side of the case? Round to the nearest tenth.

Write about it: Suppose you are given the measure of an acute angle in a right triangle and the length of the leg adjacent to this angle. Describe $\mathbf{2}$ different methods that you could use to find the length of the hypotenuse.

