What are some things we already know about right triangles?

Trigonometric Functions

WORDS	NUMBERS	SYMBOLS
The sine (sin) of angle θ is the ratio of the length of the opposite leg to the length of the hypotenuse .	$\sin \theta = \frac{4}{5}$	$\sin \theta = \frac{\text{opp.}}{\text{hyp.}}$
The cosine (cos) of angle θ is the ratio of the length of the adjacent leg to the length of the hypotenuse .	$\cos\theta = \frac{3}{5} \qquad \qquad$	$\cos \theta = \frac{\text{adj.}}{\text{hyp.}}$
The tangent (tan) of angle θ is the ratio of the length of the opposite leg to the length of the adjacent leg.	$\tan \theta = \frac{4}{3}$	$\tan \theta = \frac{\text{opp.}}{\text{adj.}}$

Example #1:

Find the value of the sine, cosine, and tangent functions for θ .

Review of Trig

Example #2: A skateboard ramp will have a height of 12 in., and the angle between the ramp and the ground will be 17°. To the nearest inch, what will be the length *l* of the ramp?

<u>You try</u>: A school is constructing a wheelchair ramp from the ground to a deck with a height of **18in**. The angle between the ground and the ramp must be **4**. **8**°. To the nearest inch, what should be the distance *d* between the end of the ramp and the deck?

Special Right Triangle Trig Ratios:

45-45-90

30-60-90

Review of Trig

Example #3: Use a trig function to find the value of *x* without a calculator.

You try: Now find the other side length of the triangle.

Reciprocal Trigonometric Functions			
WORDS	NUMBERS	SYMBOLS	
The cosecant (csc) of angle θ is the reciprocal of the sine function.	$\csc \theta = \frac{5}{4}$	$\csc \theta = \frac{1}{\sin \theta} = \frac{\text{hyp.}}{\text{opp.}}$	
The secant (sec) of angle θ is the reciprocal of the cosine function.	$\sec \theta = \frac{5}{3}$ $\frac{5}{\theta}$ 4	$\sec \theta = \frac{1}{\cos \theta} = \frac{\mathbf{hyp.}}{\mathbf{adj.}}$	
The cotangent (cot) of angle θ is the reciprocal of the tangent function.	$\cot \theta = \frac{3}{4}$	$\cot \theta = \frac{1}{\tan \theta} = \frac{\text{adj.}}{\text{opp.}}$	

Example #4: Find the values of the six trigonometric functions for θ .

Review of Trig

You try:

1. A boy flying a kite lets out 300 feet of string that makes an angle of 38° with the ground. Assuming that the string is straight, how high above the ground is the kite?

2. A decorative pin is in the shape of an equilateral triangle. The length of each side is 6 centimeters. Josh will attach the fastener to the back along the height of the pin. Will the fastener fit if it is 4 centimeters long?

3. A straight road to the top of a hill is 2500 feet long and makes an angle of 12° with the horizontal. Find the height of the hill.

4. A manufacturer wants to make an equilateral case with a height of 30 centimeters. What is the length of each side of the case? Round to the nearest tenth.

<u>Write about it</u>: **Suppose you are given the measure of an acute angle in a right triangle and the length of the leg adjacent to this angle. Describe 2 different methods that you could use to find the length of the hypotenuse.**