Parabolas

A parabola is the set of all points in a plane that are an equal distance from both a fixed point, the focus, and a fixed line, the directrix.

$>$ A parabola has an axis of symmetry perpendicular to its directrix and that passes through its vertex.
$>$ The vertex of a parabola is the midpoint of the perpendicular segment connecting the focus and the directrix.
$>$ " p " is the distance from the vertex to the focus.
$>$ "- p " is the distance/direction from the vertex to the directrix.

Standard Form for the Equation of a Parabola		
AXIS OF SYMMETRY	HORIZONTAL $y=0$	VERTICAL $x=0$
Equation	$x=\frac{1}{4 p} y^{2}$	$y=\frac{1}{4 p} x^{2}$
Direction	Opens right if $p>0$ Opens left if $p<0$	Opens upward if $p>0$ Opens downward if $p<0$
Focus	$(p, 0)$	$(0, p)$
Directrix	$x=-p$	$y=-p$
Graph		

Example \#1: Write the equation of the parabola given the following information: vertex $(0,0)$, directrix $x=-6$

Example \#2:

Write the equation in standard form for the parabola.

When the center moves:

| AXIS OF |
| :--- | :---: | :---: |
| SYMMETRY |\(\left.\left.\quad \begin{array}{c}HORIZONTAL

\boldsymbol{y}=\boldsymbol{k}\end{array}\right] $$
\begin{array}{c}\text { VERTICAL } \\
\boldsymbol{x}=\boldsymbol{h}\end{array}
$$\right]\)

Example \#3: Find the vertex, value of \boldsymbol{p}, axis of symmetry, focus, and directrix of the parabola $y+3=\frac{1}{8}(x-2)^{2}$. Then graph.

You try: $\quad x-1=\frac{1}{12}(y-3)^{2}$

