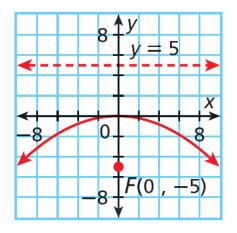

<u>Parabolas</u>

A parabola is the set of all points in a plane that are an equal distance from both a fixed point, the **focus**, and a fixed line, the **directrix**.


- A parabola has an **axis of symmetry** perpendicular to its directrix and that passes through its vertex.
- The vertex of a parabola is the midpoint of the perpendicular segment connecting the focus and the directrix.
- ➤ "p" is the distance from the vertex to the focus.
- "-p" is the distance/direction from the vertex to the directrix.

tandard Form	for the Equation of a l	Parabola Vertex at (0, 0)
AXIS OF SYMMETRY	HORIZONTAL $y = 0$	VERTICAL $x = 0$
Equation	$x = \frac{1}{4p}y^2$	$y = \frac{1}{4p}x^2$
Direction	Opens right if $p > 0$ Opens left if $p < 0$	Opens upward if $p > 0$ Opens downward if $p < 0$
Focus	(p, 0)	(0, <i>p</i>)
Directrix	x = -p	y = -p
Graph	D(-p, y) $F(p, 0)$ $x = -p$	F(0, p) $F(0, p)$ $F(x, y)$ $y = -p$ $D(x, -p)$

Section 10.5

Example #1: Write the equation of the parabola given the following information: vertex (0, 0), directrix x = -6

Example #2: Write the equation in standard form for the parabola.

When the center moves:

AXIS OF SYMMETRY	HORIZONTAL y = k	$\begin{aligned} \text{VERTICAL} \\ x = h \end{aligned}$
Equation	$x - h = \frac{1}{4p}(y - k)^2$	$y - k = \frac{1}{4p}(x - h)^2$
Directrix	x = h - p	y = k - p

Example #3: Find the vertex, value of *p*, axis of symmetry, focus, and directrix of the parabola $y + 3 = \frac{1}{8}(x - 2)^2$. Then graph.

You try:
$$x - 1 = \frac{1}{12}(y - 3)^2$$