Hyperbolas

A hyperbola is a set of points in a plane such that the difference of the distances from points on the hyperbola to fixed points F_{1} and F_{2}, the foci, is constant.

$>$ A hyperbola contains two symmetrical parts called branches.
$>$ A hyperbola also has two axes of symmetry.

- The transverse axis contains the vertices and, if it were extended, the foci of the hyperbola.
- The conjugate axis separates the two branches of the hyperbola.
- The transverse axis is NOT ALWAYS longer than the conjugate axis.
$>$ The vertices of a hyperbola are the endpoints of the transverse axis.
$>$ The co-vertices of a hyperbola are the endpoints of the conjugate axis.

$$
\text { Assume } c=\sqrt{a^{2}+b^{2}}
$$

Standard Form for the Equation of a Hyperbola Center at (0,0)

TRANSVERSE AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
Vertices	$(a, 0),(-a, 0)$	$(0, a),(0,-a)$
Foci	$(c, 0),(-c, 0)$	$(0, c),(0,-c)$
Co-vertices	$(0, b),(0,-b)$	$(b, 0),(-b, 0)$
Asymptotes	$y= \pm \frac{b}{a} x$	$y= \pm \frac{a}{b} x$

Example \#2: Write the equation in standard form.

Example \#3:
Write the equation in standard form of the hyperbola with center at the origin, vertex $(4,0)$, and focus $(10,0)$.

You try: Vertex (0,9), co-vertex ($\mathbf{7}, \mathbf{0}$), Center at origin.

Example \#4: Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, and then graph.

$$
\frac{x^{2}}{16}-\frac{y^{2}}{36}=1
$$

You try: Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, and then graph.

$$
\frac{x^{2}}{49}-\frac{y^{2}}{4}=1
$$

