Hyperbolas

A **hyperbola** is a set of points in a plane such that the difference of the distances from points on the hyperbola to fixed points F_1 and F_2 , the **foci**, is constant.

- > A hyperbola contains two symmetrical parts called **branches**.
- A hyperbola also has two axes of symmetry.
 - The **transverse axis** contains the vertices and, if it were extended, the foci of the hyperbola.
 - The **conjugate axis** separates the two branches of the hyperbola.
 - The transverse axis is NOT ALWAYS longer than the conjugate axis.
- The <u>vertices of a hyperbola</u> are the endpoints of the transverse axis.
- The <u>co-vertices of a hyperbola</u> are the endpoints of the conjugate axis.

Standard Form for the Equation of a Hyperbola (Center at (0, 0)		
TRANSVERSE AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$
Vertices	(<mark>a</mark> , 0), (–a , 0)	(0, <mark>а</mark>), (0, <i>–</i> а)
Foci	(c , 0), (- c , 0)	(0, c), (0, − c)
Co-vertices	(0, b), (0, − b)	(b , 0), (- b , 0)
Asymptotes	$y = \pm \frac{b}{a}x$	$y = \pm \frac{a}{b}x$

Assume $c = \sqrt{a^2 + b^2}$

Example #2: Write the equation in standard form.

Example #3:

Write the equation in standard form of the hyperbola with center at the origin, vertex (4, 0), and focus (10, 0).

Section 10.4 Day 1

You try: Vertex (0, 9), co-vertex (7, 0), Center at origin.

Example #4: Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, and then graph.

$$\frac{x^2}{16} - \frac{y^2}{36} = 1$$

You try: Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, and then graph.

$$\frac{x^2}{49} - \frac{y^2}{4} = 1$$