Section 10.4

## **Hyperbolas**

A **hyperbola** is a set of points in a plane such that the difference of the distances from points on the hyperbola to fixed points, called the **foci**, is constant.

- > A hyperbola contains two symmetrical parts called **branches**.
- > A hyperbola also has two axes of symmetry.
  - The **transverse axis** contains the vertices and, if it were extended, the foci of the hyperbola.
  - The <u>conjugate axis</u> separates the two branches of the hyperbola.
    The transverse axis is NOT ALWAYS longer than the conjugate axis.
- The transverse axis is NOT ALWATS longer than the conjugat
  The vertices of a hyperbola are the endpoints of the transverse axis.
- The <u>co-vertices of a hyperbola</u> are the endpoints of the conjugate axis.

Assume  $c = \sqrt{a^2 + b^2}$ 

\*\* a does not have to be larger than b

| Standard Form for the Equation of a Hyperbola <b>Center at (0, 0)</b> |                                         |                                         |
|-----------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| TRANSVERSE AXIS                                                       | HORIZONTAL                              | VERTICAL                                |
| Equation                                                              | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ | $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ |
| Vertices                                                              | ( <mark>a</mark> , 0), ( <b>–a</b> , 0) | (0, <mark>а</mark> ), (0, <i>–</i> а)   |
| Foci                                                                  | ( <b>c</b> , 0), (- <b>c</b> , 0)       | (0, <b>c</b> ), (0, − <b>c</b> )        |
| Co-vertices                                                           | (0, <b>b</b> ), (0, − <b>b</b> )        | ( <b>b</b> , 0), (- <b>b</b> , 0)       |
| Asymptotes                                                            | $y = \pm \frac{b}{a}x$                  | $y = \pm \frac{a}{b}x$                  |

## **Example #2:** Write the equation in standard form.



Section 10.4

Example #3:

Write the equation in standard form of the hyperbola with center at the origin, vertex (4, 0), and focus (10, 0).

You try: Vertex (0, 9), co-vertex (7, 0), Center at origin.

**Example #4:** Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, and then graph.

$$\frac{x^2}{16} - \frac{y^2}{36} = 1$$

Standard form of a hyperbola:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \quad or \quad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

**Example #5:** Identify the center, vertices, co-vertices the length of transverse axis, and the length of conjugate axis.

$$\frac{(x-3)^2}{9} - \frac{(y+5)^2}{49} = 1$$

Section 10.4

**Example #6:** Find the center, vertices, co-vertices, foci, and asymptotes of the hyperbola. Then graph.

$$\frac{(y+5)^2}{1} - \frac{(x-1)^2}{9} = 1$$

|            | <u>Horizontal</u>                | <u>Vertical</u>           |
|------------|----------------------------------|---------------------------|
| Asymptotes | $y - k = \pm \frac{b}{a}(x - h)$ | $y-k=\pm\frac{a}{b}(x-h)$ |

• Notice how the asymptote equations look like point-slope form when the center shifts

You try: Find the center, vertices, co-vertices, foci, and asymptotes of the hyperbola. Then graph.

$$\frac{(y-2)^2}{16} - \frac{(x+2)^2}{25} = 1$$