Circles

A circle is the set of points in a plane that are a fixed distance, called the radius, from a fixed point, called the center.

Standard Form of a Circle: $(\boldsymbol{x}-\boldsymbol{h})^{2}+(\boldsymbol{y}-\boldsymbol{k})^{2}=\boldsymbol{r}^{2}$

Example \#1:
Write the equation of a circle with center $(-3,4)$ and radius $r=6$.

Example \#2:
Write the equation of a circle with center $(0,0)$ and radius $r=7$.

You try: Write the equation of the circle centered at (1,2) with $r=3$.

Example \#3:
Write the equation of the circle with center $(-4,11)$ that contains the point $(5,-1)$

Section 10.2 and 10.3
A tangent is a line that intersects the circle at exactly one point.
$>$ Recall from geometry that a tangent to a circle is perpendicular to the radius at the point of tangency.

Example \#4:
Write the equation of the circle that is tangent to the x -axis when $x=4$ and tangent to the y-axis when $y=-6$.

Example \#5:
Write the equation of the line tangent to the circle $x^{2}+y^{2}=29$ at the point $(2,5)$.

You try:
Write an equation for the line tangent to the circle $x^{2}+y^{2}=17$ at the point $(4,1)$.

Ellipses

An ellipse is the set of points such that the sum of the distances from any point on the ellipse to two other fixed points is constant.
> The two fixed points are called the foci (plural of focus) of the ellipse.

$>$ The point halfway between the foci is the center of the ellipse.
$>$ The line segment containing the foci of an ellipse with both endpoints on the ellipse is called the major axis.
$>$ The line segment perpendicular to the major axis and passing through the center, with both endpoints on the ellipse, is the minor axis.
$>$ The vertices are the endpoints on the major axis and the co-vertices are the endpoints on the minor axis.

Section 10.2 and 10.3
Standard Form for the Equation of an Ellipse Center at (0, 0)

MAJOR AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Vertices	$(a, 0),(-a, 0)$	$(0, a),(0,-a)$
Foci	$(c, 0),(-c, 0)$	$(0, c),(0,-c)$
Co-vertices	$(0, b),(0,-b)$	$(b, 0),(-b, 0)$

Example \#1:
Write an equation in standard form for each ellipse with center $(0,0)$ and Vertex at $(6,0)$; co-vertex at $(0,4)$

Now let's graph it.

You try:
Write an equation in standard form for each ellipse with center $(0,0)$ and Co-Vertex at $(5,0)$; Vertex at $(0,-9)$.

Section 10.2 and 10.3
Example \#2:
An ellipse has its center at the origin. A vertex is at $(-13,0)$ and a covertex is at $(0,5)$. What are the coordinates of the foci?

Foci Formula: $c=\sqrt{a^{2}-b^{2}}$

Example \#3: Write an equation in standard form for the ellipse with the center at the origin.

Vertex at $(5,0)$; focus at $(-2,0)$.

Now find the length of the minor axis.

You try: Write the equation of the ellipse centered at the origin with co-vertex at $(-3,0)$ and focus at $(0,1)$.

